Skip to main content
Log in

Non-integrability of a Weakly Integrable Hamiltonian System

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The geometric approach to mechanics based on the Jacobi metric allows to easily construct natural mechanical systems which are integrable (actually separable) at a fixed value of the energy. The aim of the present paper is to investigate the dynamics of a simple prototype system outside the zero-energy hypersurface. We find that the general situation is that in which integrability is not preserved at arbitrary values of the energy. The structure of the Hamiltonian in the separating coordinates at zero energy allows a perturbation treatment of this system at energies slightly different from zero, by which we obtain an analytical proof of non-integrability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R. and Marsden, J. E.: 1978, Foundations of Mechanics, Benjamin Cummings, Menlo Park, CA, USA.

    Google Scholar 

  • Arnold, V. I.: 1978, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Arnold, V. I., Kozlov, V. V. and Neishtadt, A. I.: 1988, ‘Mathematical aspects of classical and celestial mechanics’. In: Dynamical Systems III, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Benenti, S.: 1997, ‘Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation’, J. Math. Phys. 38, 6578–6602.

    Article  Google Scholar 

  • Boccaletti, D. and Pucacco, G.: 1996, Theory of Orbits, Springer-Verlag, Berlin, Germany, Vol. 1.

    Google Scholar 

  • Darboux, G.: 1901, ‘Sur un problème de mécanique’, Archives Néerlandaises (ii) VI, 371–377.

    Google Scholar 

  • Diacu, F. and Santoprete, M.: 2001, ‘Nonintegrability and chaos in the anisotropic Manev problem’, Physica D 156, 39–52.

    Article  Google Scholar 

  • Giorgilli, A.: 2002, Notes on Exponential Stability of Hamiltonian Systems, Centro di Ricerca Matematica E. De Giorgi, Pisa.

    Google Scholar 

  • Hall, L. S.: 1983, ‘A theory of exact and approximate configurational invariants’, Physica D 8, 90–116.

    Article  Google Scholar 

  • Hietarinta, J.: 1987, ‘Direct methods for the search of the second invariant’, Phys. Rep. 147, 87–153.

    Article  Google Scholar 

  • Karlovini, M. and Rosquist, K.: 2000, ‘A unified treatment of cubic invariants at fixed and arbitrary energy’, J. Math. Phys. 41, 370–384.

    Article  Google Scholar 

  • Karlovini, M., Pucacco, G., Rosquist, K. and Samuelsson, L.: 2002, ‘A unified treatment of quartic invariants at fixed and arbitrary energy’, J. Math. Phys. 43, 4041–4059.

    Article  Google Scholar 

  • Kozlov, V. V.: 1991, Symmetries, Topology and Resonances in Hamiltonian Mechanics, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Lanczos, C.: 1986, The Variational Principles of Mechanics, Dover, New York, NY, USA.

    Google Scholar 

  • Levi-Cìvita, T.: 1956, Opere Matematiche, Editions Compositori, Bologna, Italy, Vol. 2.

    Google Scholar 

  • Markushevitch, A. I.: 1983, The Theory of Analytic Functions: A Brief Course, Mir, Moscow, Russia.

    Google Scholar 

  • Nakagawa, K. and Yoshida, H.: 2001, ‘A list of all integrable 2D homogeneous polynomial potentials with a polynomial integral of order at most 4 in the momenta’, J. Phys. A 34, 8611–8630.

    Article  Google Scholar 

  • Poincaré, H.: 1892, Les Méthodes Nouvelles de la Mécanique C´eleste, Ed. Gauthier-Villars, Paris, France, Vol. I.

    Google Scholar 

  • Rosquist, K. and Pucacco, G.: 1995, ‘Invariants at arbitrary and fixed energy: a unified geometric approach’, J. Phys. A 28, 3235–3252.

    Article  Google Scholar 

  • Sarlet, W., Leach, P. G. L. and Cantrijn, F.: 1985, ‘First integrals versus configurational invariants and a weak form of complete integrability’, Physica D 17, 87–98.

    Article  Google Scholar 

  • Sundman, K. F.: 1912, ‘Mémoire sur le probléme de trois corps’, Acta Mathematica 36, 105–179.

    Google Scholar 

  • Tsiganov, A. V.: 2000, ‘Canonical transformations of the extended phase space, Toda lattices and Stäckel family of integrable systems’, J. Phys. A 33, 4169–4182.

    Article  Google Scholar 

  • Whittaker, E. T.: 1937, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th edn, Cambridge University Press, Cambridge, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pucacco, G., Rosquist, K. Non-integrability of a Weakly Integrable Hamiltonian System. Celestial Mechanics and Dynamical Astronomy 88, 185–207 (2004). https://doi.org/10.1023/B:CELE.0000016820.95989.ff

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELE.0000016820.95989.ff

Navigation