Skip to main content
Log in

One to One Resonance at High Inclination

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We report results from long term numerical integrations and analytical studies of particular orbits in the circular restricted three-body problem. These are mostly high-inclination trajectories in 1 : 1 resonance starting at or near the triangular Lagrangian L5 point. In some intervals of inclination these orbits have short Lyapunov times, from 100 to a few hundred periods, yet the osculating semi-major axis shows only relatively small fluctuations and there are no escapes from the 1 : 1 resonance. The eccentricity of these chaotic orbits varies in an erratic manner, some of the orbits becoming temporarily almost rectilinear. Similarly the inclination experiences large variations due to the conservation of the Jacobi constant. We studied such orbits for up to 109 periods in two cases and for 106 periods in all others, for inclinations varying from 0° to 180°. Thus our integrations extend from thousands to 10 million Lyapunov times without escapes of the massless particle. Since there are no zero-velocity curves restricting the motion this opens questions concerning the reason for the persistence of the 1 : 1 resonant motion. In the theory sections we consider the mechanism responsible for the observed behavior. We derive the averaged 1 : 1 resonance disturbing function, to second order in eccentricity, to calculate a critical inclination found in the numerical experiment, and examine motion close to this inclination. The cause of the chaos observed in the numerical experiments appears to be the emergence of saddle points in the averaged disturbing potential. We determine the location of several such saddle points in the (φ, ω) plane, with φ being the mean longitude difference and ω the argument of pericentre. Some of the saddle points are illustrated with the aid of contour plots of the disturbing function. Motion close to these saddles is sensitive to initial conditions, thus causing chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaugá, C. and Roig, F.: 2001, ‘A semianalytical model for the Trojan asteroids: proper elements and families’, Icarus 153, 391–415.

    Article  Google Scholar 

  • Christou, A.: 2000, ‘A numerical survey of transient co-orbitals of the terrestrial planets’, Icarus 144, 1–20.

    Article  Google Scholar 

  • Dvorak, R. and Tsiganis, K.: 2000, ‘Why do Trojan ASCS (not) escape?’, Celest. Mech. & Dyn. Astr. 78, 125–136.

    Google Scholar 

  • Érdi, B.: 1988, ‘Long periodic perturbations of Trojan asteroids’, Celest. Mech. & Dyn. Astr. 43, 303–308.

    Google Scholar 

  • Innanen, K. and Mikkola, S.: 1989, ‘Studies on solar system dynamics. I. The stability of Saturnian Trojans’, AJ 97, 900–908.

    Article  Google Scholar 

  • Kozai, Y.: 1962, ‘Secular perturbations of asteroids with high inclination and eccentricity’, AJ 67, 591–598.

    Article  Google Scholar 

  • Lecar, M., Franklin, F. and Murison, M.: 1992, ‘On predicting long-term orbital stability: a relation between the Lyapunov time and sudden orbital transitions’, Astron. J. 104, 1230–1236.

    Article  Google Scholar 

  • Marzari, F. and Scholl, H.: 2000, ‘The role of secular resonances in the history of trojans’, Icarus 146, 232–239.

    Article  Google Scholar 

  • Mikkola, S. and Innanen, K.: 1990, ‘Studies on solar system dynamics. II. The stability of earth's Trojans’, AJ 100, 290–293.

    Article  Google Scholar 

  • Mikkola, S. and Innanen, K.: 1992, ‘A numerical exploration of the evolution of Trojan-type asteroidal orbits’, AJ 104, 1641–1649.

    Article  Google Scholar 

  • Mikkola, S. and Innanen, K.: 1994, ‘On the stability of Martian Trojans’, AJ 107, 1879–1884.

    Article  Google Scholar 

  • Mikkola, S. and Innanen, K.: 1995, ‘On the stability of high inclination Trojans’, EM&P 71, 195–198.

    Google Scholar 

  • Mikkola, S. and Innanen, K.: 1997, ‘Orbital stability of planetary quasi-satellites’. In: J. Henrard and R. Dvorak (eds), The Dynamical Behaviour of Our Planetary System, Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  • Mikkola, S. and Tanikawa, K.: 1999, ‘Explicit symplectic algorithms for time-transformed Hamiltonians’, Celest. Mech. & Dyn. Astr. 74, 287–295.

    Google Scholar 

  • Mikkola, S., Palmer, P. and Hashida, Y.: 2002, ‘An implementation of the logarithmic Hamiltonian method for artificial satellite orbit determination’, Celest. Mech. & Dyn. Astr. 82, 391–411.

    Google Scholar 

  • Milani, A. and Nobili, A.: 1992, ‘An example of stable chaos in the Solar System’, Nature 358, 569–571.

    Article  Google Scholar 

  • Milani, A., Nobili, A. and Kne\(\tilde z\)ević, Z.: 1997, ‘Stable chaos in the asteroid belt’, Icarus 125, 13–31.

    Article  Google Scholar 

  • Morais, M. H. M.: 2001, ‘Hamiltonian formulation of the secular theory for Trojan-type motion’, A&A 369, 677.

    Google Scholar 

  • Morbidelli, A. and Froeschlè, C.: 1996, ‘On the relationship between Lyapunov times and macroscopic instability times’, Celest. Mech. & Dyn. Astr. 63, 227–239.

    Google Scholar 

  • Murray, C. and Dermott, S.: 1999, Solar System Dynamics, Cambridge, 1999.

  • Namouni, F.: 1999, ‘Secular interactions of coorbital objects’, Icarus 137, 293–314.

    Article  Google Scholar 

  • Namouni, F., Cristou, A. A. and Murray, C. D.: 1999, ‘Coorbital dynamics at large eccentricity and inclination’, Phys. Rev. Lett. 83, 2506–2509.

    Article  Google Scholar 

  • Nesvorný, D., Thomas, F., Ferraz-Mello, S. and Morbidelli, A.: 2002, ‘A perturbative treatment of the co-orbital motion’, Celest. Mech. & Dyn. Astr. 82, 323–361.

    Google Scholar 

  • Pilat-Lohinger, E., Dvorak, R. and Burger, Ch.: 1999, ‘Trojans in stable chaotic motion’, Celest. Mech. & Dyn. Astr. 73, 117–126.

    Google Scholar 

  • Preto, M. and Tremaine, S.: 1999, ‘A class of symplectic integrators with adaptive timestep for separable Hamiltonian systems’, Astron. J. 118, 2532–2541.

    Article  Google Scholar 

  • Rauch, K. P. and Holman, M.: 1999, ‘Dynamical chaos in the Wisdom-Holman integrator: origins and solution’, Astron. J. 117, 1087–1102.

    Article  Google Scholar 

  • Tsiganis, K., Varvoglis, H. and Hadjidemetriou, J. D.: 2000, ‘Stable chaos in the 12:7 mean motion resonance and its relation to the stickiness effect’, Icarus 146, 240–252.

    Article  Google Scholar 

  • Tsiganis, K., Varvoglis, H. and Hadjidemetriou, J. D.: 2002, ‘Stable chaos in high-order Jovian resonances’, Icarus 155, 454–474.

    Article  Google Scholar 

  • Wisdom, J. and Holman, M.: 1991, ‘Symplectic maps for the N-body problem’, Astron. J. 102, 1520–1538.

    Article  Google Scholar 

  • Zhang, S.-P. and Innanen, K.: 1988, ‘The motion of planetary triangular Lagrange particles with high inclinations’, Astron. J. 96, 1995–2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brasser, R., Heggie, D.C. & Mikkola, S. One to One Resonance at High Inclination. Celestial Mechanics and Dynamical Astronomy 88, 123–152 (2004). https://doi.org/10.1023/B:CELE.0000016810.65114.17

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELE.0000016810.65114.17

Navigation