Skip to main content
Log in

Efficient Determination of Global Gravity Field from Satellite-to-satellite Tracking Mission

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The gravity field dedicated satellite missions like CHAMP, GRACE, and GOCE are supposed to map the Earth's global gravity field with unprecedented accuracy and resolution. New models of the Earth's static and time-variable gravity fields will be available every month as one of the science products from GRACE. A method for the efficient gravity field recovery is presented using in situ satellite-to-satellite observations at altitude and results on static as well as temporal gravity field recovery are shown. Considering the energy relationship between the kinetic energy of the satellite and the gravitational potential, the disturbing potential observations can be computed from the orbital state vector, using high-low GPS tracking data, low–low satellite-to-satellite GRACE measurements, and data from 3-axis accelerometers. The solution method is based on the conjugate gradient iterative approach to efficiently recover the gravity field coefficients and approximate error covariance up to degree and order 120 every month. Based on the monthly GRACE noise-only simulation, the geoid was obtained with an accuracy of a few cm and with a resolution (half wavelength) of 160 km. However, the geoid accuracy can become worse by a factor of 6–7 because of spatial aliasing. The approximate error covariance was found to be a very good accuracy measure of the estimated coefficients, geoid, and gravity anomaly. The temporal gravity field, representing the monthly mean continental water mass redistribution, was recovered in the presence of measurement noise and high frequency temporal variation. The resulting recovered temporal gravity fields have about 0.3 mm errors in terms of geoid height with a resolution of 670 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertella, A., Migliaccio, F. and Sanso, F.: 1990, 'The aliasing effect in coefficients estimation'. In: R. Rapp and F. Sanso (eds), IAG Symposia, Vol. 106, Springer, Berlin, pp. 10–15.

    Google Scholar 

  • Bettadpur, S. and Watkins, M.: 2000, 'GRACE gravity science and its impact on mission design'. In: Proceedings of the Spring AGU Meeting, 2000.

  • Colombo, O.: 1981, Numerical methods for harmonic analysis on the sphere, Report No. 310, Dept. of Geod. Sci. and Surv., Ohio State University, Columbus, OH.

    Google Scholar 

  • Davis, E., Dunn, C., Stanton, R. and Thomas, J.: 1999, 'The GRACE mission: meeting the technical challenges', In: Proceedings of the 50th International Astronautical Congress, October 4-8, 1999.

  • Ditmar, P. and Klees, R.: 2002, A Method to Compute the Earth's Gravity Field from SGG/SST Data to be Acquired by the GOCE Satellite, Delft University Press, Delft.

    Google Scholar 

  • Gerlach, C., Sneeuw, N., Visser, P. and Švehla, D.: 2002, 'CHAMP gravity field recovery with the energy balance approach: first results', Proc. First CHAMP International Science Meeting, Potsdam, January 2002.

  • GGFC: 2002, The IERS Global Geophysical Fluids Center, Special Bureau for Hydrology. http://www.csr.utexas.edu/research/ggfc.

  • Golub, G. and van Loan, C.: 1996, Matrix Computations, Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • GRACE Science Mission Requirement Document: 2000, GRACE 327-720, June 2000.

  • Han, D. and Wahr, J.: 1995, 'The viscoelastic relaxation of a realistically stratified Earth, and a further analysis of post glacial rebound', Geophys. J. Int. 120, 287–311.

    Google Scholar 

  • Han, S.-C., Jekeli, C. and Shum, C. K.: 2002a, 'Efficient gravity field recovery using in situ disturbing potential observables from CHAMP', Geophys. Res. Lett. 29(16), 10.1029/2002GL015180.

  • Han, S.-C., Jekeli, C. and Shum, C. K.: 2002b, 'Aliasing and polar gap effect on geopotential coef-ficient estimation: space-wise simulation study of GOCE and GRACE'. In: J. Adam and K.-P. Schwarz (eds), IAG Geodesy Symposia, Vol. 125, Springer, Berlin, pp. 181–186.

    Google Scholar 

  • Heiskanen, W. and Moritz, H.: 1967, Physical Geodesy, Freeman, San Francisco.

    Google Scholar 

  • Hwang, C.: 2001, 'Gravity recovery using COSMIC GPS data: application of orbital perturbation theory', J. Geodesy 75, 117–136.

    Google Scholar 

  • Jekeli, C.: 1996, 'Spherical harmonic analysis, aliasing, and filtering', J. Geodesy 70, 214–223.

    Google Scholar 

  • Jekeli, C.: 1999, 'The determination of gravitational potential differences from satellite-to-satellite tracking', Celest. Mech. & Dyn. Astr. 75, 85–101.

    Google Scholar 

  • Jekeli, C. and Garcia, R.: 2001, 'Local geoid determination with in situ geopotential data obtained from satellite-to-satellite tracking'. In: M. G. Sideris (ed.), IAG Symposium Series, Vol. 123, Springer, Berlin, pp. 123–128.

    Google Scholar 

  • Jekeli, C. and Rapp, R.: 1980, Accuracy of the determination of mean anomalies and mean geoid undulations from a satellite gravity mapping mission, Report No. 307, Dept. of Geod. Sci., Ohio State University, Columbus, OH.

    Google Scholar 

  • Kim, J., Roesset, P., Bettadpur, S., Tapley, B. and Watkins, M.: 2001, 'Error analysis of the gravity recovery and climate experiment (GRACE)'. In: M. Sideris (ed.), IAG Symposium Series, Vol. 123, Springer, Berlin, pp. 103–108.

    Google Scholar 

  • Klees, R., Koop, R., Visser, P., van den IJssel, J. and Rummel, R.: 2000a, 'Data analysis for the GOCE mission'. In: K. Schwarz (ed.), IAG Symposium Series, Vol. 121, Springer, Berlin, pp. 68–74.

    Google Scholar 

  • Klees, R., Koop, R., Visser, P. and van den IJssel, J.: 2000b, 'Efficient gravity field recovery from GOCE gravity gradient observations', J. Geodesy 74, 561–571.

    Google Scholar 

  • Lemoine, F., Kenyon, S., Factor, J., Trimmer, R., Pavlis, N., Chinn, D., Cox, C., Klosko, S., Luthcke, S., Torrence, M., Wang, Y., Williamson, R., Pavlis, E., Rapp, R. and Olson, T.: 1998, The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA Technical Paper NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt.

    Google Scholar 

  • Nerem, S., Wahr, J. and Leuliette, E.: 2002, 'Measuring the distribution of ocean mass using GRACE', Space Sci. Rev. (submitted).

  • Pail, R. and Plank, G.: 2002, 'Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform', J. Geodesy 76, 462–474.

    Google Scholar 

  • Pavlis, N.: 1988, Modeling and estimation of a low degree geopotential model from terrestrial gravity data, Report No. 386, Dept. of Geod. Sci., Ohio State University, Columbus, OH.

    Google Scholar 

  • Perret, A., Biancale, R., Camus, A., Lemoine, J., Fayard, T., Loyer, S., Perosanz, F. and Sarrailh, M.: 2001, 'CHAMP Mission: STAR Commissioning Phase Calibration/Validation Activities by CNES', Vols. 1 and 2, CNES, Toulouse, May 2001.

    Google Scholar 

  • Reigber, Ch., Kang, Z., König, R. and Schwintzer, P.: 1996, 'CHAMP, A minisatellite mission for geopotential and atmospheric research'. In: Proceedings of the Spring AGU Meeting, Baltimore, MD, May 1996.

  • Reigber, Ch., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.-M., König, R., Loyer, S., Neumayer, K.-H., Marty, J.-C., Barthelmes, F., Perosanz, F. and Zhu, S. Y.: 2002, 'A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S)', Geophys. Res. Lett. 29(14), 10.1029/2002GL015064.

  • Rowlands, D., Ray, R., Chinn, D. and Lemoine, F.: 2002, 'Short-arc analysis of intersatellite tracking data in a gravity mapping mission', J. Geodesy 76, 307–316.

    Google Scholar 

  • Rummel, R.: 1980, Geoid heights, geoid height differences, and mean gravity anomalies from lowlow satellite-to-satellite tracking-an error analysis, Report No. 306, Dept. of Geod. Sci., Ohio State University, Columbus, OH.

    Google Scholar 

  • Rummel et al.: 1999, Gravity Field and Steady-State Ocean Circulation Mission, Earth Explorer Mission Selection Workshop Report, SP-1233(1), European Space Agency, Granada, Spain.

    Google Scholar 

  • Schuh, W.-D.: 1996, Tailored numerical solution strategies for the global determinations of the Earth's gravity field, Mitteilungen d. Geodat. Inst. d. TU Graz, No. 81, Graz.

  • Schuh,W.-D., Sünkel, H., Hausleitner,W. and Hoke, E.: 1996, Refinement of iterative procedures for the reduction of spaceborne gravimetry data, ESA-Project CIGAR IV, WP4, Final Report, ESA contract 152163, ESTEC/JP/95-4-137/MS/nr, European Space Agency, Noordwijk, pp. 157–212.

    Google Scholar 

  • Shum, C. K., Han, S.-C., Jekeli, C., Yi, Y., Zhao, C., Dumrongchai, P., Kenyon, S., Roman, D., Zhang, K., Lu, Y. and Zhu, Y.: 2001, 'Accuracy assessment of current gravity field models'. In: Paper Presented at International Association of Geodesy Symposia, Budapest, Hungary, 2001.

  • Sneeuw, N., Gerlach, C., Švehla, D. and Gruber, C.: 2002, 'A first attempt at time-variable gravity recovery from CHAMP using the energy balance approach'. In: The Third Meeting of the International Gravity and Geoid Commission, Thessaloniki, Greece, August 2002.

  • Tapley, B., Reigber, C. and Melbourne, W.: 1996, 'Gravity recovery and climate experiment (GRACE) mission'. In: Proceedings of the Spring AGU Meeting, Baltimore, MD, May 1996.

  • Thomas, J.: 1999, An analysis of gravity field estimation based on intersatellite dual one-way biased ranging, JPL Publication 98-15, pp. 3–13.

  • Tscherning, C., Rapp, R. and Goad, C.: 1983, 'A comparison of methods for computing gravimetric quantities from high degree spherical harmonic expansions', Manuscripta Geodaetica 8, 249–272.

    Google Scholar 

  • Visser, P., Sneeuw, N. and Gerlach, C.: 2002, 'Energy integral method for gravity field determination from satellite orbit coordinates', J. Geodesy (submitted).

  • Wahr, J. and Velicogna, I.: 2002, 'Whatmight GRACE contribute to studies of post glacial rebound?', Space Sci. Rev. (submitted).

  • Wahr, J., Molenaar, M. and Bryan, F.: 1998, 'Time variability of the Earth's gravity field: hydrological and oceanic effects and their possible detection using GRACE', J. Geophy. Res. 103, 30205–30229.

    Google Scholar 

  • Wolff, M.: 1969, 'Direct determination of gravitational harmonics from low-low GRAVSAT data', J. Geophy. Res. 88, 10309–10321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, SC. Efficient Determination of Global Gravity Field from Satellite-to-satellite Tracking Mission. Celestial Mechanics and Dynamical Astronomy 88, 69–102 (2004). https://doi.org/10.1023/B:CELE.0000009383.07092.1f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELE.0000009383.07092.1f

Navigation