Skip to main content
Log in

Phase Mixing in Unperturbed and Perturbed Hamiltonian Systems

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper summarises a numerical investigation of phase mixing in time-independent Hamiltonian systems that admit a coexistence of regular and chaotic phase space regions, allowing also for low amplitude perturbations idealised as periodic driving, friction, and/or white and coloured noise. The evolution of initially localised ensembles of orbits was probed through lower order moments and coarse-grained distribution functions. In the absence of time-dependent perturbations, regular ensembles disperse initially as a power law in time and only exhibit a coarse-grained approach towards an invariant equilibrium over comparatively long times. Chaotic ensembles generally diverge exponentially fast on a time scale related to a typical finite time Lyapunov exponent, but can exhibit complex behaviour if they are impacted by the effects of cantori or the Arnold web. Viewed over somewhat longer times, chaotic ensembles typical converge exponentially towards an invariant or near-invariant equilibrium. This, however, need not correspond to a true equilibrium, which may only be approached over very long time scales. Time-dependent perturbations can dramatically increase the efficiency of phase mixing, both by accelerating the approach towards a near-equilibrium and by facilitating diffusion through cantori or along the Arnold web so as to accelerate the approach towards a true equilibrium. The efficacy of such perturbations typically scales logarithmically in amplitude, but is comparatively insensitive to most other details, a conclusion which reinforces the interpretation that the perturbations act via a resonant coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anosov, D. V.: 1967, 'Geodesic flows on closed Riemannian manifolds with negative curvature', Trudy Mat. Inst. Steklov 90, 1–210.

    Google Scholar 

  • Armbruster, D., Guckenheimer, J. and Kim, S.: 1989, 'Chaotic dynamics in systems with square symmetry', Phys. Lett. A 140, 416–420.

    Google Scholar 

  • Arnold, V. I.: 1989, Mathematical Methods of Classical Mechanics, Springer, New York.

    Google Scholar 

  • Bennetin, G., Galgani, L. and Strelcyn, J. M.: 1976, 'Kolmogorov entropy and numerical experiments', Phys. Rev. A 14, 2338–2345.

    Google Scholar 

  • Bertin, G.: 2000, Dynamics of Galaxies, Cambridge University Press, Cambridge.

    Google Scholar 

  • Contopoulos, G.: 1971, 'Orbits in highly perturbed dynamical systems. III. Nonperiodic orbits', Astron. J. 76, 147–156.

    Google Scholar 

  • Grassberger, P., Badii, R. and Poloti, A.: 1988, 'Scaling laws for invariant measures in hyperbolic and nonhyperbolic attractors', J. Statist. Phys. 51, 135–176.

    Google Scholar 

  • Griner, A., Strittmatter, W. and Honerkamp, J.: 1988, 'Numerical integration of stochastic differential equations', J. Statist. Phys. 51, 95–108.

    Google Scholar 

  • Guckenheimer, J. and Holmes, P.: 1983, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York.

    Google Scholar 

  • Habib, S., Kandrup, H. E. and Mahon, M. E.: 1996, 'Chaos and noise in a truncated Toda potential', Phys. Rev. E 53, 5473–5476.

    Google Scholar 

  • Hénon, M. and Heiles, C.: 1964, 'The applicability of the third integral of motion: some numerical experiments', Astron. J. 69, 73–79.

    Google Scholar 

  • Hopf, E.: 1936, Trans. Am. Math. Soc. 39, 229.

    Google Scholar 

  • Kandrup, H. E.: 1998, 'Phase mixing in time-independent Hamiltonian systems,' Mon. Not. R. Astr. Soc. 301, 960–974.

    Google Scholar 

  • Kandrup, H. E.: 2003, 'Chaos and chaotic phase mixing in galaxies and charged particle beams,' In: G. Contopoulos and N. Vogilis (eds), Galaxies and Chaos, Theory and Observations Springer Lecture Notes in Physics (in press).

  • Kandrup, H. E. and Mahon, M. E.: 1994, 'Relaxation and stochasticity in a truncated Toda lattice', Phys. Rev. E 49, 3735–3747.

    Google Scholar 

  • Kandrup, H. E. and Sideris, I. V.: 2001a, 'Chaos in cuspy triaxial galaxies with a supermassive black hole: a simple toy model', Celest. Mech. and Dyn. Astr. 82, 61–81.

    Google Scholar 

  • Kandrup, H. E. and Sideris, I. V.: 2001b, 'Chaos and the continuum limit in the gravitational N-body problem. Integrable potentials', Phys. Rev. E 64, 056209-1–056209-11.

    Google Scholar 

  • Kandrup, H. E. and Sideris, I. V.: 2003, 'Smooth potential chaos and N-body simulations', Astrophys. J. 585, 244–249.

    Google Scholar 

  • Kandrup, H. E., Abernathy, R. A. and Bradley, B. O.: 1995, 'Resonant driving of chaotic orbits', Phys. Rev. E 51, 5287–5297.

    Google Scholar 

  • Kandrup, H. E., Eckstein, B. L. and Bradley, B. O.: 1997, 'Chaos, complexity, and short time Lyapunov exponents: two alternative characterisations of chaotic orbit segments', Astron. Astrophys. 320, 65–73.

    Google Scholar 

  • Kandrup, H. E., Sideris, I. V. and Bohn, C. L.: 2002, 'Chaos, ergodicity, and the thermodynamics of lower-dimensional Hamiltonian systems', Phys. Rev. E 65, 016214-1–016214-16.

    Google Scholar 

  • Kandrup, H. E., Sideris, I. V. and Bohn, C. L.: 2003, 'Chaos and the continuum limit in nonneutral plasmas and charged particle beams', Phys. Rev. ST-AB (submitted).

  • Kishek, R. A., O'Shea, P. G. and Reiser, M.: 2000, 'Energy transfer in space-charged-dominated beams', Phys. Rev. Lett. 85, 4514–4517.

    Google Scholar 

  • Kishek, R. A., Bohn, C. L., Haber, I., O'Shea, P. G., Reiser, M. and Kandrup, H. E.: 2001, 'Computational investigation of dissipation and reversibility of space-charge driven processes in beams', In: P. Lucas and S. Weber (eds), Proceedings of the 2001 IEEE Particle Accelerator Conference, New York, 2001, IEEE Cat. No. 01CH37268, pp. 151–153.

  • Lichtenberg, A. J. and Lieberman, M. A.: 1992, Regular and Chaotic Dynamics, New York, Springer.

    Google Scholar 

  • Lieberman, M. A. and Lichtenberg, A. J.: 1972, 'Stochastic and adiabatic behaviour of particles accelerated by periodic forces', Phys. Rev. A 5, 1852–1866.

    Google Scholar 

  • Lindenberg, K. and Seshadri, V.: 1981, 'Dissipative contributions of internal multiplicative noise. I. Mechanical oscillator', Physica A 109, 483–499.

    Google Scholar 

  • Lynden-Bell, D.: 1967, 'Statistical mechanics of violent relaxation in stellar systems', Mon. Not. R. Astr. Soc. 136, 101–121.

    Google Scholar 

  • Merritt, D. and Fridman, T.: 1996, 'Triaxial galaxies with cusps', Astrophys. J. 460, 436–462.

    Google Scholar 

  • Merritt, D. and Valluri, M.: 1996, 'Chaotic mixing in triaxial stellar systems', Astrophys. J. 471, 82–105.

    Google Scholar 

  • Patsis, P. A., Athanassoula, E. and Quillen, A. C.: 1997, 'Orbits in the bar of NGC 4314', Astrophys. J. 483, 731–744.

    Google Scholar 

  • Pettini, M.: 1996, 'Geometric hints for a nonperturbative approach to Hamiltonian dynamics', Phys. Rev. E 47, 828–850.

    Google Scholar 

  • Pogorelov, I. V.: 2000, 'Phase space transport and the continuum limit in nonlinear Hamiltonian systems', Physics PhD Dissertation, University of Florida.

  • Pogorelov, I. V. and Kandrup, H. E.: 1999, 'Noise-induced phase space transport in two-dimensional Hamiltonian systems', Phys. Rev. E 60, 1567–1578.

    Google Scholar 

  • Reiser, M.: 1994, Theory and Design of Charged Particle Beams, NewYork, Wiley.

    Google Scholar 

  • Rosenbluth, M. N., MacDonald, W. M. and Judd, D. L.: 1957, 'Fokker-Planck equation for an inverse-square force', Phys. Rev. 107, 1–6.

    Google Scholar 

  • Sideris, I. V. and Kandrup, H. E.: 2002, 'Chaos and the continuum limit in the gravitational N-body problem. II. Nonintegrable systems', Phys. Rev. E 65, 066203-1–066203-14.

    Google Scholar 

  • Siopis, C. and Kandrup, H. E.: 2000, 'Phase space transport in triaxial Dehnen potentials: can they be used to construct self-consistent equilibria?', Mon. Not. R. Astr. Soc. 319, 43.

    Google Scholar 

  • Tennyson, J.: 1979, 'The instability threshold for bunched beams in ISABELLE', In: M. Month and J. C. Herrera (eds), Nonlinear Dynamics and the Beam-Beam Interaction, Brookhaven, New York, March 1979, AIP, New York, pp. 158–172.

    Google Scholar 

  • Valluri,M. and Merritt, D.: 2000, 'Orbital instability and relaxation in stellar systems', In: R. Ruffini and V. G. Gurzadyan (eds), The Chaotic Universe, World Scientific, New York, pp. 229–237.

    Google Scholar 

  • Van Kampen, N. G.: 1981, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandrup, H.E., Novotny, S.J. Phase Mixing in Unperturbed and Perturbed Hamiltonian Systems. Celestial Mechanics and Dynamical Astronomy 88, 1–35 (2004). https://doi.org/10.1023/B:CELE.0000009380.17257.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELE.0000009380.17257.98

Navigation