Skip to main content
Log in

Cytotoxic effects of environmentally relevant chlorophenols on L929 cells and their mechanisms

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The chlorophenol chemicals (CPs) are a major class of widely distributed and frequently occurring persistent environmental pollutants. Pentachlorophenol (PCP) has been proposed to be procarcinogen in rodents and in possibly human beings. Human beings also easily expose to other chlorophenol chemicals, including 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,3,4-trichlorophenol (TCP), prompting this investigation of their comparative cytotoxic effects and cell death mechanisms, assayed in fibroblast L929 cells. The effective concentration for half-maximal response (EC50) values at 24 h for CP, DCP, TCP, and PCP are 2.18, 0.83, 0.46, and 0.11 mmol/L respectively and the EC50 values at 48 h are 1.18, 0.13, 0.08, and 0.06 mmol/L respectively by using 3-(4,5-dimethylthiazd-2-yl)-2,5-diphenyltentrazolium bromide (MTT) reduction assay. A clear structure–activity relationship was observed between toxicity of CPs and their octanol–water partition coefficients. The further studies indicate that CP, DCP, and TCP induce apoptosis in L929 cells in a concentration or time-dependent manner, but PCP mediates cell death more characteristic of necrosis than apoptosis. These results not only demonstrate that L929 cell growth inhibition bioassay may be useful to provide the comparative evaluation of toxicity of CPs in vitro, but also implicate that CP, DCP, TCP, in comparison with PCP, can induce L929 cell death by apoptosis, resulting in lower procarcinogensis, which may help to elucidate the molecular basis for the adverse health effects associated with CPs exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlborg UG, Thunberg T. Chlorinated phenols: occurrence, toxicity, metabolism and environmental impact. CRC Crit Rev Toxicol. 1980;7:1–35.

    CAS  Google Scholar 

  • Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci. 1995;92:7162–6.

    CAS  PubMed  Google Scholar 

  • Bursch W, Oberhammer F, Schulte-Hermann R. Cell death by apoptosis and its protective role against disease. Trends Pharmacol. 1992;13:245–51.

    CAS  Google Scholar 

  • Chhabra RS, Maronpot RM, Bucher JR, Haseman JK, Toft JD, Hejtmancik MR. Toxicology and carcinogenesis studies of pentachlorophenol. Toxicol Sci. 1999;48:14–20.

    Article  CAS  PubMed  Google Scholar 

  • Dahlhaus M, Almstadt E, Henschke P, Luttgert S, Appel KE. Oxidative DNA lesion in V79 cells mediated by pentachlorophenol metabolites. Arch Toxicol. 1996;70:457–60.

    Article  CAS  PubMed  Google Scholar 

  • Daniel V, Huber W, Bauer K, Opeiz G. Impaired in vitro lymphocyte responses in patients with elevated pentachlorophenol blood levels. Arch Environ Health. 1995;50:287-92

    CAS  PubMed  Google Scholar 

  • Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry. 1997;7:120.

    Google Scholar 

  • Deichman WB, Keplinger ML. Phenols and phenolic compounds. In: Clayton GD, Cayton FE, editors. Patty's industrial hygiene and toxicology. New York: Wiley Press. 1981:2567–627.

    Google Scholar 

  • Hale AJ, Smith CA, Sutherland LC, et al. Apoptosis: molecular regulation of cell death. Eur J Biochem. 1996;236:1–26.

    Article  CAS  PubMed  Google Scholar 

  • Jensen J. Chlorophenols in the terrestrial environment. Rev Environ Contam Toxicol. 1996;146:25–46.

    CAS  PubMed  Google Scholar 

  • Juhl U, Witte I, Butte W. Metabolism of pentachlorophenol to tetrachlorohydroquinone by human liver homogenate. Bull Environ Contam Toxicol. 1985;33:596–601.

    Google Scholar 

  • Kerr JFR, Harmon BV. Definition and incidence of apoptosis: an historical perspective. In: Tomei LD, Cope FO, editors. Apoptosis: the molecular basis of cell death. New York: Cold Spring Harbor Laboratory Press. 1991:529.

    Google Scholar 

  • Kutz FW, Cook BT. Selected pesticide residues and metabolites in urine from a survey of the US general population. J Toxicol Environ Health. 1992;37:277–91.

    CAS  PubMed  Google Scholar 

  • Lin PH, Waidyanatha S, Pollack GM, Swenberg JA, Rappaport SM. Dose-specific production of chlorinated quinone and semiquinone adducts in rodent livers following administration of pentachlorophenol. Toxicol Sci. 1999;47:126–33.

    Article  CAS  PubMed  Google Scholar 

  • Mayura K, Smith EE, Clement BA and Phillips TD. Evaluation of the developmental oxicity of chlorinated phenols utilising Hydra attenuata and postimplantation rat embryos in culture. Toxicol Appl Pharmacol. 1991;108:253–66.

    Article  CAS  PubMed  Google Scholar 

  • McConnachie PR, Zahalsky AC. Immunologic consequences of exposure to pentachlorophenol. Arch Environ Health. 1991;46:249–53.

    CAS  PubMed  Google Scholar 

  • McConnell EE. Toxicology and carcinogenesis studies of two pentachlorophenol technical-grade mixtures in B6C3F1 mice. In: US National Toxicology Program, Department of Health and Human Services, NIH publication. 1989:89-2804.

  • Renner G, Hopfer C. Metabolic studies on pentachlorophenol (PCP) in rat. Xenobiotica. 1990;20:573–82.

    CAS  PubMed  Google Scholar 

  • Roberts HJ. Pentachlorophenol-associated aplastic anaemia, red cell aplasia leukaemia and other blood disorders. J Florida Med Assoc. 1990;77:86–90.

    CAS  Google Scholar 

  • Sai K, Upham BL, Kang KS, Hasegawa R, Inoue T. Inhibition effect of pentachlorophenol on gap junctional intercellular communication in rat liver epithelial cells in vitro. Cancer Lett. 1998;130:9–17.

    Article  CAS  PubMed  Google Scholar 

  • Sai K, Kang KS, Hirose A, Hasegawa R, Trosko JE, Inoue T. Inhibition of apoptosis by pentachlorophenol in v-myc-transfected rat liver epithelial cell: relation to down regulation of gap junctional intercellular communication. Cancer Lett. 2001;173:163–74.

    Article  CAS  PubMed  Google Scholar 

  • Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–62.

    CAS  PubMed  Google Scholar 

  • Treble RG, Thompson TS. Normal values for pentachlorophenol in urine samples collected from a general population. J Anal Toxicol. 1996;20:313–17.

    CAS  PubMed  Google Scholar 

  • Trosko JE, Goodman JI. Intercellular communication may facilitate apoptosis: implications for tumor promotion. Mol Carcinogen. 1994;11:8–12.

    CAS  Google Scholar 

  • Tsai CH, Lin PH, Waidyanatha S, Rappaport SM. Characterization of metabolic activation of pentachlorophenol to quinines and semiquinones in rodent liver. Chemico-Biological Interact. 2001;134:55–71.

    CAS  Google Scholar 

  • Umemura T, Sai K, Takagi A, Hasegawa R, Kurokawa Y. Oxidative DNA damage and cell proliferation in the livers of B6C3F1 mice exposed to pentachlorophenol in their diet. Fund Appl Toxicol. 1996;30:285–9.

    Article  CAS  Google Scholar 

  • Umemura T, Kai S, Hasegawa R, Sai K, Kurokawa Y, Williams GM. Pentachlorophenol (PCP) produces liver oxidative stress and promotes but not initiate hepatocarcinogenesis in B6C3F1 mice. Carcinogenesis. 1999;20:1115–20.

    Article  CAS  PubMed  Google Scholar 

  • Verschueren K. editor. Handbook of environmental data on organic chemicals, 3rd edn. New York: van Nostrand Reeinhold. 1996.

    Google Scholar 

  • Wang YJ, Lee CC, Chang WC, Liou HB, Ho YS. Oxidative stress and liver toxicity in rats and human hepatoma cell line induced by pentachlorophenol and its major metabolite tetrachlorohydroquinone. Toxicol Lett. 2001;122:157–69.

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Lin JK. Estimation of selected phenols in drinking water with in situ acetylation and study on the DNA damaging properties of polychlorinated phenols. Arch Environ Contam Toxicol. 1995;28:537–42.

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Ho YS, Jeng JH et al. Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone. Chemico-Biological Interact. 2000;128:173–88.

    CAS  Google Scholar 

  • Weinbach EC. The effect of pentachlorophenol on oxidative phosphorylation. J Biol Chem. 1954;210:300–15.

    Google Scholar 

  • Zhao F, Mayura K, Hutchinson RW, Lewis RP, Burghardt RC, Phillips TD. Developmental toxicity and structure-activity relationship of chlorophenols using human embryonic palatal mesenchymal cells. Toxicol Lett. 1995;78:35–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Jiang, J., Zhang, F. et al. Cytotoxic effects of environmentally relevant chlorophenols on L929 cells and their mechanisms. Cell Biol Toxicol 20, 183–196 (2004). https://doi.org/10.1023/B:CBTO.0000029468.89746.64

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CBTO.0000029468.89746.64

Navigation