Skip to main content
Log in

Glutathione depletion modulates methanol, formaldehyde and formate toxicity in cultured rat conceptuses

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The proposed use of methanol (H3COH) as an alternative to fossil fuels has prompted concern about potential health risks resulting from widespread environmental exposure. Methanol is teratogenic in rodents and, although the exact toxic species is not known, teratogenesis may result from the enzymatic biotransformation of H3COH to formaldehyde (CH2O) and formic acid causing increased biological reactivity and toxicity. A protective role for the antioxidant glutathione (GSH) has been described for H3COH, CH2O and formic acid toxicity in various biological systems but has yet to be evaluated in the developing conceptus. Whole embryo culture studies were conducted using GD 10-11 rat conceptuses to elucidate the relationship between H3COH and its metabolites and GSH status. Methanol exposure produced a decrease in normal growth parameters and a dose-dependent loss of viability. CH2O had deleterious effects on embryo growth and viability. Sodium formate (HCOONa) exposure resulted in a high mortality rate but viable embryos did not manifest any abnormalities. Methanol, CH2O, and HCOONa all produced a significant depletion of GSH in both embryo and VYS. Inhibition of GSH synthesis by L-buthionine-S,R-sulfoximine (BSO) treatment exacerbated H3COH, CH2O and HCOONa embryotoxicity. Interestingly, only H3COH/BSO and CH2O/BSO co-treatments caused increased malformation, while embryos treated with HCOONa/BSO did not produce any developmental deformities. These results implicate CH2O as the most embryotoxic H3COH metabolite, on a molar basis, in terms of causing dysmorphogenesis, alterations of normal growth parameters and embryolethality. HCOONa was selectively embryolethal and did not produce dysmorphogenesis. CH2O toxicity is potentiated by GSH depletion, indicating that GSH may be more directly involved in its detoxication in the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews JE, Ebron-McCoy M, Kavlock RJ, Rogers JM. Developmental toxicity of formate and formic acid in whole embryo culture: a comparative study with mouse and rat embryos. Teratology. 1995;51:243–51.

    Article  CAS  PubMed  Google Scholar 

  2. Andrews JE, Ebron-Mccoy M, Schmid JE, Svendsgaard D. Effects of combinations of methanol and formic acid on rat embryos in culture. Teratology. 1998;58:54–61.

    Article  CAS  PubMed  Google Scholar 

  3. Bolon B, Dorman DC, Janszen D, Morgan KT, Welsch F. Phase-specific developmental toxicity in mice following maternal methanol inhalation. Fundam Appl Toxicol. 1993;21:508–16.

    Article  CAS  PubMed  Google Scholar 

  4. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  5. Fahey RC, Newton GL. Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol. 1987;143:85–96.

    CAS  PubMed  Google Scholar 

  6. Fantel AG, Juchau MR, Tracy JW, Burroughs CJ, Person RE. Studies of mechanisms of niridazole-elicited embryo-toxicity: evidence against a major role for covalent binding. Teratology. 1989;39:63–74.

    CAS  PubMed  Google Scholar 

  7. Farbiszewski R, Witek A, Skrzydlewska E. N-acetylcysteine or trolox derivative mitigate the toxic effects of methanol on the antioxidant system of rat brain. Toxicology. 2000;156:47–55.

    Article  CAS  PubMed  Google Scholar 

  8. Food and Drug Administration (FDA). 1984. Frequency of use of cosmetic ingredients. FDA Database. Washington, DC: FDA.

    Google Scholar 

  9. Hansen JM, Carney EW, Harris C. Differential alteration by thalidomide of the glutathione content of rat vs. rabbit conceptuses in vitro. Repro Toxicol. 1999;13:547–54.

    CAS  Google Scholar 

  10. Harris C, Namkung MJ, Juchau MR. Regulation of intracellular glutathione in rat embryos and visceral yolk sacs and its effect on 2-nitrosofluorene-induced malformations in the whole embryo culture system. Toxicol Appl Pharmacol. 1987;88:141–52.

    Article  CAS  PubMed  Google Scholar 

  11. Harris C, Juchau MR, Mirkes PE. Role of glutathione and hsp 70 in the acquisition of thermotolerance in postimplantation rat embryos. Teratology. 1991;43:229–39.

    Article  CAS  PubMed  Google Scholar 

  12. Harris, C. Glutathione biosynthesis in the postimplantation rat conceptus in vitro. Toxicol Appl Pharmacol. 1993;120:247–56.

    Article  CAS  PubMed  Google Scholar 

  13. Harris C, Wang S-W, Lauchu JJ, Hansen JM. Methanol metabolism and embryotoxicity in rat and mouse conceptuses: Comparisons of alcohol dehydrogenase (ADH1), formaldehyde dehydrogenase (ADH3), and catalase. Repro Toxicol. 2003;17:349–57.

    CAS  Google Scholar 

  14. Infurna R, Weiss B. Neonatal behavioral toxicity in rats following prenatal exposure to methanol. Teratology. 1986;33:259–65.

    Article  CAS  PubMed  Google Scholar 

  15. Kavet R, Nauss KM. The toxicity of inhaled methanol vapors. Crit Rev Toxicol. 1990;21:21–50.

    CAS  PubMed  Google Scholar 

  16. Lanigan S. Final report on the safety assessment of methyl alcohol. Int J Toxicol. 2001;20(Suppl. 1):57–85.

    CAS  PubMed  Google Scholar 

  17. Nelson BK, Brightwell WS, MacKenzie DR, et al. Teratological assessment of methanol and ethanol at high inhalation levels in rats. Fundam. Appl Toxicol. 1985;5:727–36.

    Article  CAS  PubMed  Google Scholar 

  18. Sato H, Kuriyama-Matsumura K, Hashimoto T, et al. Effect of oxygen on induction of the cysteine transporter by bacterial lipopolysaccharide in mouse peritoneal macrophages. J Biol Chem. 2001;276:10407–12.

    CAS  PubMed  Google Scholar 

  19. Skrzydlewska E, Farbiszewski R. Lipid peroxidation and antioxidant status in the liver, erythrocytes, and serum of rats after methanol intoxication. J Toxicol Environ Health. 1998;53:637–49.

    CAS  Google Scholar 

  20. Skrzydlewska E, Witek A, Farbiszewski R. The comparison of the antioxidant defense potential of brain to liver of rats after methanol ingestion. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998;120:289–94.

    CAS  PubMed  Google Scholar 

  21. Von Burg R. Methanol. J Appl Toxicol. 1994;14:309–13.

    CAS  PubMed  Google Scholar 

  22. Ward KW, Pollack GM. Maternal-fetal toxicokinetics of methanol. Toxicologist. 1995;15:186.

    Google Scholar 

  23. Ward KW, Pollack GM. Comparative toxicokinetics of methanol in pregnant and nonpregnant rodents. Drug Metab Dispos. 1996;24:1062–70.

    CAS  PubMed  Google Scholar 

  24. Youssef AF, Baggs RB, Weiss B, Miller RK. Teratogenicity of methanol following a single oral dose in Long-Evans rats. Reprod Toxicol. 1997;11:503–10.

    Article  CAS  PubMed  Google Scholar 

  25. Zorzano A, Herrera E. Decreased in vivo rate of ethanol metabolism in the suckling rat. Alcohol Clin Exp Res. 1989;13:527–32.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, C., Dixon, M. & Hansen, J. Glutathione depletion modulates methanol, formaldehyde and formate toxicity in cultured rat conceptuses. Cell Biol Toxicol 20, 133–145 (2004). https://doi.org/10.1023/B:CBTO.0000029466.08607.86

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CBTO.0000029466.08607.86

Navigation