Skip to main content
Log in

In vitro effects of Celiptium and MR 14504 on mature rat Leydig cell testosterone production

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Percoll-purified mature rat Leydig cells have been used to evaluate the testicular toxicity of two highly potent intercalating agents (Celiptium and MR 14505). Testosterone secretion in the absence and in the presence of human chorionic gonadotropin (hCG) was measured to assess Leydig cell function. Celiptium and MR 14504 induce time- and dose-related inhibitory effects on the production of testosterone by Leydig cells, both in the presence and in the absence of hCG, whatever the concentration of hCG used. We have observed that MR 14504 is about 5 times more potent as an inhibitor of rat Leydig cell steroidogenesis than Celiptium without inducing any cell toxicity. The present study indicates that the Leydig cell is an additional potential site for the primary toxic effects of these drugs in the adult rat testis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertoson BD, Frederic KL, Maronian NC et al. The effects of ketoconazole on steroidogenesis Leydig cell enzyme activity in vitro. Res Commun Chem Pathol Pharmacol. 1988;61:17–26.

    Google Scholar 

  • Auroux M, Dulioust E, Nawar N, Yacoub S. Antimitotic drugs (cyclophosphamide and vinblastine) in the male rat: deaths and behavioral abnormalities in offspring. J Androl. 1986;7:378–86.

    Google Scholar 

  • Benhamed M, Reventos J, Tabone E, Saez JM. Cultured Sertoli cell-mediated FSH stimulatory effect on Leydig cell steroidogenesis. Am J Physiol. 1985;248:176–87.

    Google Scholar 

  • Boujrad N, Guillaumin JM, Bardos P, Hochereau de Reviers MT, Drosdowsky MA, Carreau S. Germ cell-Sertoli cell interactions and production of testosterone by purified Leydig cells from mature rat. J Steroid Biochem Mol Biol. 1992;41:677–87.

    Google Scholar 

  • Carreau S. Germ cells-Sertoli cells interactions and Leydig cell function. In: Dufau ML, Fabbri A, Isidori A, eds. Cell and molecular biology of the testis. Serono Symposia Publications, Frontiers in Endocrinology, 1994;5:137–48.

  • Carreau S, Papadopoulos V, Boujrad N, Drosdowsky MA. Effects of cisplatin and bleomycin on mature rat Leydig cell testosterone production. J Steroid Biochem. 1988;30:449–57.

    Google Scholar 

  • Chapin RE, Phelps JL, Somrti SG, Heindel JL, Bukka LT. The interaction of steroid and Leydig cells in the testicular toxicity of tri-o-cresyl phosphate. Toxicol Appl Pharmacol. 1990;104:483–95.

    Google Scholar 

  • Chasalow F, Marr H, Haour F, Saez JM. Testicular steroidogenesis after human chorionic gonadotropin desensitization in rats. J Biol Chem. 1979;254:5613–7.

    Google Scholar 

  • Foster PMD, Lloyd SC, Prout MS. Toxicity and metabolism of 1,3-dinitrobenzene in rat testicular cell cultures. Toxicol In Vitro. 1987;1:31–7.

    Google Scholar 

  • Gachie F, Carreau S. Production de testostérone leydigienne chey le rat mature: mécanisme d'action du facteur paracrine sertolien. CR Acad Sci Paris. 1994;317:190–3.

    Google Scholar 

  • Jegou B, Velez de la Calle JF. Protection de la spermatogenèse: mythe ou réalité. Contracept Fertil Sex. 1993;21(10):744–8.

    Google Scholar 

  • Johnson DH, Hainsworth JD, Linde RB, Greco FA. Testicular function following combination chemotherapy with cisplatin, vinblastin and bleomycin. Med Ped Oncol. 1984;12:233–8.

    Google Scholar 

  • Johnson L, Wilker CE, Safe SH, Scott B, Dean DD, White P. 2,3,7,8-Tetrachlorobenzo-p-dioxin reduces the number, size, and organelle content of Leydig cells in adult rat testes. Toxicology. 1994;89:49–65.

    Google Scholar 

  • Klinefelter GR, Lasky JW, Kelce WK et al. Chloroethylmethanesulfonate-induced effects on the epididymis seem unrelated to altered Leydig cell function. Biol Reprod. 1994;51:82–97.

    Google Scholar 

  • Kleeman JM, Moore RW, Peterson RE. Inhibition of testicular steroidogenesis in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rats: evidence that the key lesion occurs prior to or during pregnenolone formation. Toxicol Appl Pharmacol. 1990;106:112–5.

    Google Scholar 

  • Kovacevic R, Sarac M. Bromocriptine-induced inhibition of hydroxylase/lyase activity of adult rat Leydig cells. J Steroid Biochem Mol Biol. 1993;46:841–5.

    Google Scholar 

  • Lambert RM, Robertson WR. Biopotency and site of action of drugs affecting testicular steroidogenesis. J Endocrinol. 1987;113:457–61.

    Google Scholar 

  • Lancelot JC, Rault S, Robba M. Heron JF, Gauduchon P, Le Talaer JY. Pyrido[3,2-b]carbazoles. Synthèse et étude de toxicité in vitro sur cellules clonées de leucémie L 1210. XXIIème Recontres Internationales de Chimie Thérapeutique, Clermaont Ferrand, 1986.

  • Lasey JW, Phelps PV. Effect of cadmium and other metal cations on in vitro Leydig cell testosterone production. Toxicol Appl Pharmacol. 1991;108:296–306.

    Google Scholar 

  • Marmor D. Fertilité après traitements cytostatiques. Bull Cancer. 1994;81:764–9.

    Google Scholar 

  • Matsumots AM. Hormonal control of human spermatogenesis. In: Burger H, de Kretser DM, eds. The testis. New York: Raven Press; 1989:181–96.

    Google Scholar 

  • McLaren TT, Foster PMD, Sharpe RM. Effects of age on seminiferous tubule protein secretion and the adverse effects of testicular toxicants in the rat. Int J Androl. 1993;16:370–9.

    Google Scholar 

  • Meistrich ML. Critical components of testicular function and sensitivity to disruption. Biol Reprod. 1986;34:17–28.

    Google Scholar 

  • Meistrich ML, Finch M, da Cunha MF, Hacker H, Au WW. Damaging effects of fourteen chemotherapeutic drugs on mouse testis cells. Cancer Res. 1982;42:122–31.

    Google Scholar 

  • Moinet V, Tabka T, Gauduchon P et al. 6H-Pyrido[3,2-b]carbazoles: activité cytotoxique, interaction avec l'ADN, interférence avec les activités topo-isomérases I et II. Bull Cancer. 1992;75(6):534.

    Google Scholar 

  • Moore RW, Jeffcoate CR, Peterson RE. 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits steroidogenesis in the rat testis by inhibiting the mobilization of cholesterol to cytochrome P450scc. Toxicol Appl Pharmacol. 1991;109:85–97.

    Google Scholar 

  • Papadopoulos V, Carreau S, Drosdowsky MA. Effect of phorbol ester and phospholipoase C on LH-stimulated sterogenesis in purified rat Leydig cells. FEBS Lett. 1985;188:312–6.

    Google Scholar 

  • Pearce R, Sufi SB, O'Shaughessy PJ, Donalson A, Jeffcoate SL. Site of gossypol inhibition of steroidogenesis in purified mouse Leydig cells. J Steroid Biochem. 1986;25:683–7.

    Google Scholar 

  • Phillips JC, Foster PMD, Gangolli SD. Chemically-induced injury to the male reproductive tract. In: Thomas JA, Korach S, McLachlan JA, eds. Endocrine toxicology. New York: Raven Press; 1985:117–34.

    Google Scholar 

  • Robba M, Lancelot JC, Rault S, Gauduchon P, Le Talaer JY, 6H-Pyrido[3,2-b]carbazoles, leur procédé de preparation et leur application en thérapeutique. Brevet français RCL, no. 617/MR/CD, no. de depot 9009688; 1990.

  • Santen RJ, Cohn N, Misbin R, Samojlik E, Foltz E. Acute effects of aminoglutethimide on testicular steroidogenesis in normal men. J Clin Endocrinol Metab. 1979;49:631–4.

    Google Scholar 

  • Santen RJ, Van Den Bossche H, Symoens J, Brugmans J, Decoster R. Site of action of low dose of ketoconazole on androgen biosynthesis in men. J Clin Endocrinol Metab. 1993;57:732–6.

    Google Scholar 

  • Schurmeyer TH, Nieschlag E. Effects of ketoconazole and other inidozole fungicide on testosterone biosynthesis. Acta Endocrinol. 1984;105:275–80.

    Google Scholar 

  • Sikka SC, Swerdloff RS, Rajfer J. In vitro inhibition of testosterone biosynthesis by ketoconazole. Endocrinology. 1985;116:1920–5.

    Google Scholar 

  • Steinberger A, Klinefelter G. Sensitivity of Sertoli and Leydig cells to xenobiotic in in vitro models. Reprod Toxicol. 1993;7:23–37.

    Google Scholar 

  • Steinberger E. Hormonal control of mammalian spermatogenesis. Physiol Rev. 1971;51:1–22.

    Google Scholar 

  • Thomas JA, Keenan EJ. Effects of drugs on the endocrine system. In: Thomas JA, Keen EJ, eds. Principles of endocrine pharmacology. 1986:277–83.

  • Vawda AL. Effect of testosterone on cisplatin-induced testicular damage. Arch Androl. 1994;32:53–7.

    Google Scholar 

  • Vawda AL, Davies AG. Effects of cisplatin on the mouse testis. Acta Endocrinol. 1986;112:436–47.

    Google Scholar 

  • Wahba ZZ, Miller MS, Waulkes MP. Absence of changes in metallothion RNA in the rat testes made refractory to cadmium toxicity by zinc pretreatment. Hum Exp Toxicol. 1994;13:65–7.

    Google Scholar 

  • Zirkin BR, Gross R, Ewing LL. Effects of lead acetate on male rat reproduction. Concepts Toxicol. 1985;3:138–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Kadri, H., Lancelot, J., Drosdowsky, M. et al. In vitro effects of Celiptium and MR 14504 on mature rat Leydig cell testosterone production. Cell Biol Toxicol 13, 83–94 (1997). https://doi.org/10.1023/B:CBTO.0000010393.20626.18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CBTO.0000010393.20626.18

Navigation