Skip to main content
Log in

A New Generation of Titanosilicate Catalyst: Preparation and Application to Liquid-Phase Epoxidation of Alkenes

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A novel titanosilicate with the MWW topology, Ti-MWW, has been prepared by direct hydrothermal synthesis using boric acid as a structure-supporting agent, and also by post-incorporation of tetrahedral Ti species into MWW silicalite through controlled structural conversions between three-dimensional crystalline silicalite and the lamellar precursor. Ti-MWW is further converted by delamination into a thin sheet material applicable to the reaction of bulky reactants. Both direct hydrothermal synthesis and postsynthesis methods make it possible to introduce a controllable amount of Ti species into the MWW structure. An acid treatment of uncalcined samples is essentially important for the removal of the extraframework octahedral Ti species located on the exterior layer surface. The catalytic properties of Ti-MWW have been compared with those of conventional titanosilicates (TS-1, TS-2, Ti-Beta, Ti-MOR, Ti-MCM-41, etc.) in the epoxidation of various alkenes with hydrogen peroxide. Hydrothermally synthesized Ti-MWW proves to be more effective in the epoxidation of linear alkenes including functionalized ones, and also exhibits considerable activity for cycloalkenes. Moreover, it shows a unique shape selectivity not shared with other titanosilicates in the epoxidation of cis/trans geometric alkene isomers. Postsynthesized Ti-MWW, nearly free of boron, catalyses the alkene epoxidation more effectively as a result of the tetrahedral Ti species different from those resulting from the direct synthesis, which turns out to be the most active epoxidation titanosilicate catalyst so far. Delaminated Ti-MWW, possessing an extremely open and accessible surface area but maintaining the basic structure of zeolite, catalyses the epoxidation of various cycloalkenes more actively than large pore titanosilicates including mesoporous Ti-MCM-41.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kouwenhoven and B. de Kroes, Stud. Surf. Sci. Catal. 137 (2001) 673.

    Google Scholar 

  2. G. Bellussi and M.S. Rigutto, Stud. Surf. Sci. Catal. 137 (2001) 911.

    Google Scholar 

  3. G. Ricchiardi, A. Damin, S. Bordiga, C. Lamberti, G. Spanò, F. Rivetti and A. Zecchina, J. Am. Chem. Soc. 123 (2001) 11409.

    Google Scholar 

  4. T. Taramasso, G. Perego and B. Notari, US Pat. 4,410,50 (1983).

  5. J.S. Reddy, R. Kumar and P. Ratnasamy, Appl. Catal. 58 (1990) L1.

    Google Scholar 

  6. D.P. Serrano, H.-X. Li and M.E. Davis, J. Chem. Soc. Chem. Commun. 745 (1992).

  7. M.A. Camblor, A. Corma, A. Martínez and J. Pérez-Pariente, Chem. Commun. (1992) 589

  8. M.A. Camblor, M. Constantini, A. Corma, L. Gilbert, P. Esteve, A. Martínez and S. Valencia, Chem. Commun. (1996) 1339.

  9. T. Blasco, M.A. Camblor, A. Corma, P. Esteve, A. Martínez, C. Prieto and S. Valencia, Chem. Commun. (1996) 2367;T. Blasco, M.A. Camblor, A. Corma, P. Esteve, J.M. Guil, A. Martínez, J.A. Perdigon-Melon and S. Valencia, J. Phys. Chem. B 102 (1998) 7126.

  10. N. Jappar, Q. Xia and T. Tatsumi, J. Catal. 180 (1998) 132;T. Tatsumi and N. Jappar, J. Phys. Chem. B 102 (1998) 710026.

    Google Scholar 

  11. A. Tuel, Zeolites 15 (1995) 228.

    Google Scholar 

  12. A. Tuel, Zeolites 15 (1995) 236.

    Google Scholar 

  13. P. Wu, T. Komatsu and T. Yashima, J. Phys. Chem. 100 (1996) 10316;P. Wu, T. Komatsu and T. Yashima, J. Catal. 168 (1997) 400; P. Wu, T. Komatsu and T. Yashima, Stud. Surf. Sci. Catal. 105 (1997) 663; P. Wu, T. Komatsu and T. Yashima, J. Phys. Chem. B 102 (1998) 9297.

    Google Scholar 

  14. M.J. Díñaz-Cabañas, L.A. Villaescusa and M.A. Camblor, Chem. Commun. (2000) 761.

  15. A. Corma, M.J. Díñaz-Cabañas, M.E. Domine and F.Z. Rey, Chem. Commun. (2000) 1725.

  16. P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, Chem. Lett. (2000) 774;P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, J. Phys. Chem. B 105 (2001) 2897; P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, J. Catal. 202 (2001) 245; P. Wu and T. Tatsumi, Chem. Commun. (2001) 897; P. Wu and T. Tatsumi, J. Phys. Chem. B 106 (2002) 748; P. Wu and T. Tatsumi, J. Catal. 214 (2003) 317.

  17. P. Wu and T. Tatsumi, Chem. Commun. (2002) 1026.

  18. T. Blasco, M.T. Navarro, A. Corma and J. Pérez-Pariente, J. Catal. 156 (1995) 65.

    Google Scholar 

  19. A.K. Koyano and T. Tatsumi, Chem. Commun. (1997) 145.

  20. B.L. Newalkar, J. Olanrewaju and S. Komarneri, Chem. Mater. 13 (2001) 552.

    Google Scholar 

  21. P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, Chem. Mater. 14 (2002) 1657.

    Google Scholar 

  22. A. Carati, C. Flego, E. Previde Massara, R. Millini, L. Carluccio and G. Bellussi, Micropor. Mesopor. Mater. 30 (1999) 137.

    Google Scholar 

  23. M.E. Leonowicz, J.A. Lawton, S.L. Lawton and M.K. Rubin, Science 264 (1994) 1910.

    Google Scholar 

  24. W.J. Roth, C.T. Kresge, J.C. Vartuli, M.E. Leonowicz, A.S. Fung and S.B. McCullen, Stud. Surf. Sci. Catal. 94 (1995) 201.

    Google Scholar 

  25. A. Corma, V. Fornés, S.B. Pergher, Th.L.M. Maesen and G. Buglass, Nature 396 (1998) 353.

    Google Scholar 

  26. M.A. Camblor, A. Corma, M.J. Díaz-Cabanas and C. Baerlocher, J. Phys. Chem. B 102 (1998) 44.

    Google Scholar 

  27. R. Millini, G. Perego, W.O. Parker, G. Bellussi and L. Carluccio, Micropor. Mater. 4 (1995) 221.

    Google Scholar 

  28. M.W. Anderson, O. Terasaki, T. Ohsuna, A. Phillippou, S.P. MacKay, A. Ferreria, J. Rocha and S. Lidin, Nature 367 (1994) 347;C. Lamberti, Micropor. Mesopor. Mater. 30 (1999) 155.

    Google Scholar 

  29. F. Boccuzzi, S. Coluccia, G. Ghiotti, C. Morterra and A. Zecchina, J. Phys. Chem. 82 (1978) 1298.

    Google Scholar 

  30. T. Tatsumi, M. Nakamura, K. Yuasa and H. Tominaga, Chem. Lett. (1990) 297.

  31. M.G. Clerici and G. Bellussi, Eu. Pat. 315,247 and 315,248 (1988); M.G. Clerici and P. Ingallina, J. Catal. 140 (1993) 71.

  32. M.S. Rigutto, R. de Ruiter, J.P.M. Niederer and H. van Bekkum, Stud. Surf. Sci. Catal. 84 (1994) 2245.

    Google Scholar 

  33. D. Levin, A.D. Chang, S. Luo, G. Santiestebana and J.C. Vartuli, US Pat. 6,114,551 (2000).

  34. D. Nuntasri, P. Wu and T. Tatsumi, Chem. Lett. (2003) 326.

  35. P. Wu, W. Fang, D. Nuntasri and T. Tatsumi, J. Phys. Chem., in press

  36. W. Fan, P. Wu, S. Namba and T. Tatsumi, Angew. Chem. Int. Ed. 43 (2003) 236.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, P., Tatsumi, T. A New Generation of Titanosilicate Catalyst: Preparation and Application to Liquid-Phase Epoxidation of Alkenes. Catalysis Surveys from Asia 8, 137–148 (2004). https://doi.org/10.1023/B:CATS.0000027015.37277.fb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATS.0000027015.37277.fb

Navigation