Skip to main content
Log in

Supramolecular Interactions and Morphology Control in Microwave Synthesis of Nanoporous Materials

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Application of a microwave technique to the conventional hydrothermal process is gaining importance, especially, in the synthesis of nanoporous materials. This microwave technique is regarded as a novel synthesis tool because it gives several beneficial advantages such as homogeneous nucleation, rapid synthesis, formation of uniform crystals, and small crystallites, facile morphology control, energy efficiency and so on. Recently, it was found that it offers an efficient way to control the crystal morphology, size and orientation, and even crystalline phase which are required for many emerging applications of nanoporous materials. This review summarizes recent work on the microwave effect, supramolecular interactions and control of crystal morphology upon microwave synthesis of nanoporous materials performed by the present authors. Synthesis and morphology control of nanoporous materials such as ZSM-5, zeolite beta, metallosilicates, AlPO, MCM-41, SBA-15, SBA-16, etc. have been accomplished with microwave irradiation. In particular, the rapid nucleation and crystallization of ZSM-5 zeolite under microwave irradiation made it possible to enable the continuous microwave synthesis, implying a great industrial and technological importance. The formation of nanoporous materials, especially, silicate or aluminosilicate molecular sieves was described on the basis of supramolecular interactions between organic template molecules and silicate species under microwave irradiation. Besides decreasing synthesis time, it was duly demonstrated that the microwave technique provides an effective way to control particle size distribution and macroscopic morphology in the synthesis. Moreover, for the application of these porous materials, microwave-induced nanofabrication of microporous and mesoporous materials is more important than that of simple porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M.P. Mingos, Res. Chem. Intermed. 20 (1994) 85.

    Google Scholar 

  2. A.R. Crosland and N. Bratchell, J. Assoc. Public Anal. 26 (1988) 89.

    Google Scholar 

  3. S.A. Matthes, In Introduction to Microwave Sample Preparation: Theory and practice, L.B. Jassie and H.M. Kingston (eds), (ACS, Washington DC, 1988) p. 33.

    Google Scholar 

  4. H.M. Kingston and S.J. Haswell (eds), Microwave-Enhanced Dhemistry, Fundamentals, Sample Preparation, and Application (ACS, Washington DC, 1997).

    Google Scholar 

  5. G. Roussy and P. Chenot, J. Phys. Chem. 85 (1981) 2199.

    Google Scholar 

  6. K.J. Rao, B. Vaidhyanathan, M. Ganguli and P.A. Ramakrishnan, Chem. Mater. 11 (1999) 882.

    Google Scholar 

  7. O. Tatsuo and W. Akiko, Phys. Chem. Commun. 3 (2001) 1.

    Google Scholar 

  8. G. Roussy, S. Hilaire, J.M. Thiebaut, G. Maire, F. Garin and S. Ringler, Appl. Catal. A: Gen. 156 (1997) 167.

    Google Scholar 

  9. G. Bond, R.B. Moyes and D.A. Whan, Catal. Today, 17 (1993) 427.

    Google Scholar 

  10. F.J. Berry, L.E. Smart, P.S. Sai Prasad, N. Lingaiah and P. Kanta Rao, Appl. Catal. A: Gen. 204 (2000) 191.

    Google Scholar 

  11. Y. Wang, J.H. Zhu, J.M. Cao, Y. Chun and Q.H. Xu, Micropor. Mesopor. Mater. 26 (1998) 175.

    Google Scholar 

  12. X. Zhang, D.O. Hayward and D.M.P. Mingos, Ind. Eng. Chem. Res. 40 (2001) 2810.

    Google Scholar 

  13. S.M. Margolis, L. Jasse and H.M. Kingston, J. Aut. Chem. 13 (1991) 93.

    Google Scholar 

  14. A. Sanders, H. Wetzel,M. Kunst,In Microwave Processing of Materials II, W. Snyder Jr., W.H. Sutton, M. Iskander and D.L. Johnson (eds), Vol. 189, (MRS, Pittsburgh, PA, 1990) p. 403.

    Google Scholar 

  15. W.H. Sutton, Ceramic Bull. 68 (1989) 376.

    Google Scholar 

  16. C.S. Cundy, R.J. Plaisted and J.P. Zhao, Chem. Commun. (1998) 1465.

  17. P. Lidström, J. Tierney, B. Wathey and J. Westman, Tetrahedron 57 (2001) 9225.

    Google Scholar 

  18. C.S. Cundy, Collect. Czech, Chem. Commun. 63 (1998) 1699and references therein.

    Google Scholar 

  19. J. Zhu, O. Polchik, S. Chen and A. Gedanken, J. Phys. Chem. B 104 (2000) 7344.

    Google Scholar 

  20. G.A. Ozin, Adv. Mater. 4 (1992) 612.

    Google Scholar 

  21. M.E. Davis, Nature 417 (2002) 813.

    Google Scholar 

  22. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck, Nature 359 (1992) 710.

    Google Scholar 

  23. C.B. Amphlett, Inorganic Ion Exchangers, (Elsevier, New York, 1964).

    Google Scholar 

  24. D.W. Breck and E.M. Flanigen (eds), Zeolite Molecular Sieves, (Society of Chemical Industry, London, 1968) p. 47.

    Google Scholar 

  25. A. Corma, Chem. Rev. 97 (1997) 2373.

    Google Scholar 

  26. A. Corma, J. Catal., in press.

  27. C.S. Cundy and P.A. Cox, Chem. Rev. 103 (2003) 663.

    Google Scholar 

  28. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 31 (1972) 578.

  29. C. Gabriel, S. Gabriel, E.H. Grant B.S.J. Halsteed and D.P. Mingos, Chem. Soc. Rev. 27 (1998) 213.

    Google Scholar 

  30. G. Roussy and P. Chenot, J. Phys. Chem. 85 (1981) 2199.

    Google Scholar 

  31. P. Chu, F.G. Dwyer and J.C. Vartuli, US Patent 4778 666, 1998.

  32. A. Arafat, J.C. Jansen, A.R. Ebaid and H. van Bekkum, In Synthesis of Microporous Materials, M.L. OccelliandH.E. Robson(eds), Vol. 1 (Van Nostrand Reinhold, New York, 1992) p. 507.

    Google Scholar 

  33. A. Arafat, J.C. Jansen, A.R. Ebaid and H. van Bekkum, Zeolites 13 (1993) 162.

    Google Scholar 

  34. I. Girnus, K. Jancke, R. Vetter, J. Richter-Mendau and J. Caro, Zeolites 15 (1995) 33.

    Google Scholar 

  35. S.H. Jhung, J.-S. Chang, J.S. Hwang and S.-E. Park, Microporous Mesopor. Mater., in press.

  36. J.G. Carmona, R.R. Clemente and J.G. Morales, Zeolite 18 (1997) 340.

    Google Scholar 

  37. C.G. Wu and T. Bein, Chem. Commun. (1996) 925.

  38. S.-E. Park, D.S. Kim, J.-S. Chang and W.Y. Kim, Catal. Today 44 (1998) 301.

    Google Scholar 

  39. H.M. Sung-Suh, D.S. Kim and S.-E. Park, J. Ind. Eng. Chem. 5 (1999) 191.

    Google Scholar 

  40. Y. Sun, W. Lin, J. Chen, Y. Yue and W. Pang, Stud. Surf. Sci. Catal. 105A (1997) 77.

    Google Scholar 

  41. Y. Zhang, S. Zhao, G. Sun and Z. Wang, Cuihua Xuebao 21 (2000) 345.

    Google Scholar 

  42. B.L. Newalkar, S. Komarneni and H. Katsuki, Chem. Commun. (2000) 2389.

  43. B.L. Newalkar and S. Komarneni, Chem. Mater. 13 (2001) 4573.

    Google Scholar 

  44. B.L. Newalkar, J. Olanrewaju and S. Komarneni, Chem. Mater. 13 (2001) 552.

    Google Scholar 

  45. B.L. Newalkar, J. Olanrewaju and S. Komarneni, Phys. Chem. B 105 (2001) 8356.

    Google Scholar 

  46. Y.K. Hwang, J.-S. Chang, Y.-U. Kwon and S.-E. Park, Stud. Surf. Sci. Catal. 146 (2003) 101.

    Google Scholar 

  47. S.L. Burkett and M.E. Davis, In Comprehensive Supramolecular Chemistry, G. Alberti and T. Bein(eds), Vol. 7 (Pergamon, Exter, 1996) p.465.

    Google Scholar 

  48. A.R. von Hippel (eds), Dielectric Materials and Applications(MIT, Cambridge, 1954) p. 361.

    Google Scholar 

  49. D.E. Clark,In Microwave: Theory and Application in Materials Processing IV, D.E. Clark,W.H. SuttonandD.A. Lewis (eds), Ceram. Trans. 21 (Am. Ceram. Soc., Westerville, OH, 1991) p. 698.

    Google Scholar 

  50. D.M.P. Mingos and A.G. Whittaker, J. Chem. Soc. Dalton Trans. (1992) 2751.

  51. F. Smith, B. Cousins, J. Bozic and W. Flora, Anal. Chim. Acta. 177 (1985) 243.

    Google Scholar 

  52. E.H. Grant, R.J. Sheppard and G.P. South (eds), Dielectric Behaviour of Biological Molecules in Solution, (Clarendon Press, Oxford, UK, 1978).

    Google Scholar 

  53. D.M.P. Mingos and D.R. Baghurst, Chem. Soc. Rev. 20 (1991) 47.

    Google Scholar 

  54. D.S. KimPh.D. Thesis, A study on nanoporous materials synthesized by microwave, Korea University, 2000.

  55. J.P. Zhao, C. Cundy and J. Dwyer, Stud. Surf. Sci. Catal. 105 (1997) 181.

    Google Scholar 

  56. L. Gora and R.W. Thompson, Zeolites 18 (1997) 132.

    Google Scholar 

  57. D.S. Kim, J.M. Kim, J.-S. Chang and S.-E. Park, Stud. Surf. Sci. Catal. 135 (2001) 333.

    Google Scholar 

  58. D. Zhao, Q. Huo, J. Feng, B.F. Chemlka and G.D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024.

    Google Scholar 

  59. S.A. Bagshaw, E. Prouzet and T.J. Pinnavaia, Science 269 (1995) 1242.

    Google Scholar 

  60. K.W. Gallis, J.T. Araujo, K.J. Duff, J.G. Moore and C.C. Landry, Adv. Mater. 11 (1999) 1452.

    Google Scholar 

  61. M. Grun, I. Lauer and K.K. Unger, Adv. Mater. 9 (1997) 254.

    Google Scholar 

  62. T. Bein, Chem. Mater. 5 (1993) 905.

    Google Scholar 

  63. D. Zhao, Q. Huo, J. Feng, B.F. Chemlka and G.D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024.

    Google Scholar 

  64. S.L. Burkett and M.E. Davis, J. Phys. Chem. 98 (1994) 4647.

    Google Scholar 

  65. A. Karlsson, M. Stöcker and R. Schmidt, Micropor. Mesopor. Mater. 27 (1999) 181.

    Google Scholar 

  66. D.S. Kim, S.-E. Park and S.A. Kang, Stud. Surf. Sci. Catal. 129 (2000) 107.

    Google Scholar 

  67. H.M. Sung-Suh, D.S. Kim, Y.K. Park and S.-E. Park, Res. Chem. Intermed. 26(2000) 283.

    Google Scholar 

  68. S.-E. Park, D.S. Kim, J.-S. Chang and W.Y. Kim, Stud. Surf. Sci. Catal. 117 (1998) 265.

    Google Scholar 

  69. J.K. Thomas, Chem. Rev. 80 (1980) 283.

    Google Scholar 

  70. M. Almgreen, F. Grieser and J.K. Thomas, J. Am. Chem. Soc. 102 (1980) 3188.

    Google Scholar 

  71. K. Kalyanasundaram and J.K. Thomas, J. Am. Chem. Soc. 99 (1977) 2039.

    Google Scholar 

  72. A. Galarneau, D. Lerner, M.F. Ottariani, F.D. Renzo and F. Fajular, Stud. Surf. Sci. Catal. 117 (1998) 405.

    Google Scholar 

  73. H. Itoh, S. Ishido, M. Nomura, T. Hayakawa and S. Mitaku, J. Phys. Chem. 100 (1996) 9047.

    Google Scholar 

  74. A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A. Walker, J.A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G.D. Stucky and B.F. Chmelka, Science 267 (1995) 1138.

    Google Scholar 

  75. A. Monnirer, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwel, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B.F. Chmelka, Science 261 (1993) 1299.

    Google Scholar 

  76. D. Calabro, E.W. Valyocsik and F.X. Ryan, Micropor. Mater. 7 (1996) 243.

    Google Scholar 

  77. S.L. Burkett and M.E. Davis, In Comprehensive Supramolecular Chemistry, G. Alberti and T. Bein (eds), Vol. 7 (Pergamon, Exter, 1996) p. 465.

    Google Scholar 

  78. H. Gies and B. Marler, Zeolites 12 (1992) 42.

    Google Scholar 

  79. A.V. Goretsky, L.W. Beck, S.I. Zones and M.E. Davis, Micropor. Mesopor. Mater. 28 (1999) 387.

    Google Scholar 

  80. M.E. Davis, Cattech 1 (1997) 19.

    Google Scholar 

  81. M.A. Camblor, A. Corma and S.J. Valencia, Mater. Chem. 8 (1998) 2137.

    Google Scholar 

  82. C.J. Brinker and G.W. Scherer, In Sol-gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990) p. 644.

    Google Scholar 

  83. E.D. Neas and M.J. Collins, In Introduction to Microwave Sample Preparation, H.M. Kinston and L.B. Jassie (eds), (ACS, Washington, DC, 1988) p. 7

    Google Scholar 

  84. A. Kuperman, S.and Nadimi, S.G.A. Ozin, J.M. Garces and M.M. Olken, Nature 365 (1993) 239.

    Google Scholar 

  85. S. Feng and T. Bein, Science 265 (1994) 1839.

    Google Scholar 

  86. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides and G.D. Stucky, Science 282 (1998) 2244.

    Google Scholar 

  87. D.A. Doshi, N.K. Huesing, M. Lu, H. Fan, Y. Lu, K. Simmons-Potter Jr., B.G. Potter, A.J. Hurd and C.J. Brinker, Science 209 (2000) 107.

    Google Scholar 

  88. L. Huang, Z. Wang, J. Sun, L. Miao, Q. Li, Y. Yan and D. Zhao, J. Am. Chem. Soc. 122 (2000) 3530.

    Google Scholar 

  89. M.Z. Yates, K.C. Ott, E.R. Birnbaum and T.M. McCleeskey, Angew. Chem. Int. Ed. 41 (2002) 476.

    Google Scholar 

  90. M. Ganschow, G. Schulz-Ekloff, M. Wark, M. Wendschuh-Josties and D. Wöhrle, J. Mater. Chem., 11 (2001) 1823.

    Google Scholar 

  91. H. Du, M. Fang, W. Xu, X. Meng and W.J. Pang, Mater. Chem. 7 (1997) 551.

    Google Scholar 

  92. S. Mintova, S. Mo and T. Bein, Chem. Mater. 10 (1998) 4030.

    Google Scholar 

  93. S.-E. Park, D.S. Kim and Y.K. Hwang, Stud. Surf. Sci. Catal. 145 (2003) 91.

    Google Scholar 

  94. Y.K. Hwang, Ph. D. Thesis, Synthesis and Nanofabrication of Nanoporous Materials, SungKyunKwan Univeristy, 2002.

  95. J.M. Kim, D.S. Kim, J.S. Hwang, J.-S. Chang and S.-E. Park, Abstr. Pap. 221st, Am. Chem. Soc. (2001) San Diego CA, United States, April 1-5, 2001.

  96. S.-E. Park, D.S. Kim, Y.K. Hwang, J.-S. Chang, J.S. Hwang and S.H. Jhung, Abstr. Pap. 224th, Am. Chem. Soc. Boston, MA, United States, August 18-22, 2002.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SE., Chang, JS., Hwang, Y.K. et al. Supramolecular Interactions and Morphology Control in Microwave Synthesis of Nanoporous Materials. Catalysis Surveys from Asia 8, 91–110 (2004). https://doi.org/10.1023/B:CATS.0000026990.25778.a8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATS.0000026990.25778.a8

Navigation