Skip to main content
Log in

Production of Hydrogen from Methane by a CO2 Emission-Suppressed Process: Methane Decomposition and Gasification of Carbon Nanofibers

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Catalytic methane decomposition into hydrogen and carbon nanofibers and the oxidations of carbon nanofibers with CO2, H2O and O2 were overviewed. Supported Ni catalysts (Ni/SiO2, Ni/TiO2 and Ni/carbon nanofiber) were effective for the methane decomposition. The activity and life of the supported Ni catalysts for methane decomposition strongly depended on the particle size of Ni metal on the catalysts. The modification of the catalysts with Pd enhanced the catalytic activity and life for methane decomposition. In particular, the supported Ni catalysts modified with Pd showed high turnover number of hydrogen formation at temperatures higher than 973 K with a high one-pass methane conversion (>70%). However, sooner or later, every catalyst completely lost their catalytic activities due to the carbon layer formation on active metal surfaces. In order to utilize a large quantity of the carbon nanofibers formed during methane decomposition as a chemical feedstock or a powdered fuel for heat generation, they were oxidized with CO2, H2O and O2 into CO, synthesis gas and CO2, respectively. In every case, the conversion of carbon was greater than 95%. These oxidations of carbon nanofibers recovered or enhanced the initial activities of the supported Ni catalysts for methane decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NEDO, New Energy Related Database (2000), Installation and operation costs (2000), http://www.nedo.go.jp/index.html.

  2. N.Z. Muradov, Energy Fuels 12 (1998) 41.

    Google Scholar 

  3. M. Steinberg and H.C. Cheng, Int. J. Hydrogen Energy 14 (1989)311.

    Google Scholar 

  4. M. Steinberg and H.C. Cheng, Int. J. Hydrogen Energy 23 (1998) 419.

    Google Scholar 

  5. M.G. Poirier and C. Sapundzhiev, Int. J. Hydrogen Energy 22 (1997) 429.

    Google Scholar 

  6. L.P. Biró, C.A. Bernardo, G.G. Tibbetts and Ph. Lambin (eds), Carbon Filaments and Nanotubes: Common Origins, Differing Applications? (Kluwer Academic Pub., The Netherlands, 2001).

    Google Scholar 

  7. G. Benedek, P. Milani and V.G. Ralchenko (eds), Nanostructured Carbon for Advanced Applications, (Kluwer Academic Pub, The Netherlands, 2001).

    Google Scholar 

  8. K.P. De Jong and J.W. Geus, Catal. Rev.-Sci. Eng 42 (2000) 481.

    Google Scholar 

  9. B. Gaudernack and S. Lynum, Int. J. Hydrogen Energy 23 (1998) 1087.

    Google Scholar 

  10. M. Steinberg, Int. J. Hydrogen Energy 24 (1999) 771.

    Google Scholar 

  11. T. Zhang and M.D. Amiridis, Appl. Catal. A: Gen. 167 (1998) 161.

    Google Scholar 

  12. T.V. Chaudhary and D.W. Goodman, J. Catal. 192 (2000) 316.

    Google Scholar 

  13. S. Takenaka and K. Otsuka, Chem. Lett. (2001) 218.

  14. S. Takenaka, Y. Tomikubo, E. Kato and K. Otsuka, Fuel 83 (2004) 47.

    Google Scholar 

  15. V.R. Choudhary, S. Banerjee and A.M. Rajput, Appl. Catal. A: Gen. 234 (2002) 259.

    Google Scholar 

  16. K. Otsuka, S. Kobayashi and S. Takenaka, Appl. Catal. A: Gen. 190 (2000) 261.

    Google Scholar 

  17. T. Ishihara, Y. Miyashita, H. Iseda and Y. Takita, Chem. Lett. (1995) 93.

  18. T. Zhang and M.D. Amiridis, Appl. Catal. A 167 (1998) 161.

    Google Scholar 

  19. R. Aiello, J.E. Fiscus, H.-C. Loye and M.D. Amiridis, Appl. Catal. A: Gen. 192 (2000) 227.

    Google Scholar 

  20. S. Takenaka, H. Ogihara, I. Yamanaka and K. Otsuka, Appl. Catal. A: Gen. 217 (2001) 101.

    Google Scholar 

  21. S. Takenaka, S. Kobayashi, H. Ogihara and K. Otsuka, J. Catal. 217 (2003) 79.

    Google Scholar 

  22. K. Otsuka, H. Ogihara and S. Takenaka, Carbon 41 (2003) 223.

    Google Scholar 

  23. S. Takenaka, Y. Shigeta and K. Otsuka, Chem. Lett. 32 (2003) 26.

    Google Scholar 

  24. S. Takenaka, Y. Shigeta, E. Tanabe and K. Otsuka, J. Catal. 220 (2003) 468.

    Google Scholar 

  25. E. Boellaad, P.K. De Bokx, A.J.H.M. Kock and J.W. Geus, J. Catal. 96 (1985) 481.

    Google Scholar 

  26. R.T.K. Baker, M.S. Kim, A. Chambers, C. Park and N.M. Rodriguez, Stud. Surf. Sci. Catal. 111 (1997) 99.

    Google Scholar 

  27. S. Takenaka, H. Ogihara and K. Otsuka, J. Catal. 208 (2002) 54.

    Google Scholar 

  28. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates and R.J. Waite, J. Catal. 26 (1972) 51.

    Google Scholar 

  29. V.I. Zaikovskii, V.V. Chesnokov and R.A. Buyanov, Appl. Catal. 38 (1988) 41.

    Google Scholar 

  30. F.C. Schouten, E.W. Kaleveld and G.A. Bootsma, Surf. Sci. 63 (1977) 460.

    Google Scholar 

  31. F.C. Schouten, O.L.J. Gijzeman and G.A. Bootsma, Surf. Sci. 87 (1979) 460.

    Google Scholar 

  32. K. Otsuka, S. Kobayashi and S. Takenaka, J. Catal. 200 (2001) 4.

    Google Scholar 

  33. R.T.K. Baker, Carbon 27 (1989) 315.

    Google Scholar 

  34. S. Takenaka, E. Kato, Y. Tomikubo and K. Otsuka, J. Catal. 219 (2003) 176.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otsuka, K., Takenaka, S. Production of Hydrogen from Methane by a CO2 Emission-Suppressed Process: Methane Decomposition and Gasification of Carbon Nanofibers. Catalysis Surveys from Asia 8, 77–90 (2004). https://doi.org/10.1023/B:CATS.0000026989.55379.10

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATS.0000026989.55379.10

Navigation