Advertisement

Catalysis Letters

, Volume 97, Issue 1–2, pp 71–75 | Cite as

Characterization of PtSn Nanoparticles in KL Zeolite and n-Hexane Aromatization Activity

  • Sung June Cho
  • Ryong Ryoo
Article

Abstract

Bimetallic nanoparticles of Pt and Sn have been prepared with an ion exchange of Sn2+ ions into KL zeolite containing 1-nm Pt nanoparticles. Incorporation of Sn does not cause a blockage for xenon adsorption. The results of data analysis of X-ray absorption fine structure show that the obtained particle size does not increase significantly. The microstructure of the PtSn nanoparticles seems to be Pt core covered with Sn. The obtained PtSn nanoparticles show a high selectivity to benzene with a comparable turnover rate for n-hexane aromatization.

PtSn nanoparticles KL zeolite n-hexane aromatization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Srinivasan and B.H. Davis, Platinum Met. Rev. 36 (1992) 119.Google Scholar
  2. [2]
    B.C. Gates, Chem. Rev. 95 (1995) 511.Google Scholar
  3. [3]
    P. Meriaudeau, C. Naccache, A. Thangaraj, C.L. Bianchi, R. Carli, V. Vishvanathan and S. Narayanan, J. Catal. 154 (1995) 345.Google Scholar
  4. [4]
    C. Xu, Y.L. Tsai and B.E. Koel, J. Phys. Chem. 98 (1994) 585.Google Scholar
  5. [5]
    R.D. Cortright and J.A. Dumesic, Appl. Catal. A: Gen. 129 (1995) 101.Google Scholar
  6. [6]
    S.J. Cho, W.S. Ahn, S.B. Hong and R. Ryoo, J. Phys. Chem. 100 (1996) 4996.Google Scholar
  7. [7]
    R. Ryoo, S.J. Cho, C. Pak and J.Y. Lee, Catal. Lett. 20 (1993) 107.Google Scholar
  8. [8]
    H. Ihee, T. Becue, R. Ryoo, C. Potvin, J.-M. Manoli and G. Djega-Mariadassou, Stud. Surf. Sci. Catal. 84 (1994) 765.Google Scholar
  9. [9]
    J.C. Schlatter and M. Boudart, J. Catal. 24 (1974) 482.Google Scholar
  10. [10]
    R. Ryoo, C. Pak and S.J. Cho, Jpn. J. Appl. Phys. 32; Suppl. 32-2 (1993) 475.Google Scholar
  11. [11]
    D.H. Ahn, J.S. Lee, M. Nomura, W.M.H. Sachtler, G. Moretti, S.I. Woo and R. Ryoo, J. Catal. 133 (1992) 191.Google Scholar
  12. [12]
    E.A. Stern, M. Newville, B. Ravel, Y. Yacoby and D. Haskel, Physica B 208 (1995) 117.Google Scholar
  13. [13]
    M. Newville, P. Livins, Y. Yacoby, J.J. Rehr and E.A. Stern, Phys. Rev. B 47, (1993) 14126.Google Scholar
  14. [14]
    J.J. Rehr, R.C. Albers and S.I. Zabinsky, Phys. Rev. Lett. 69 (1992) 3397.Google Scholar
  15. [15]
    A. Caballero, H. Dexpert, B. Didillon, F. LePeltier, O. Clause and J. Lynch, J. Phys. Chem. 97 (1993) 11283.Google Scholar
  16. [16]
    G. Meitzner, G.H. Via, F.W. Lytle, S.C. Fung and J. H. Sinfelt, J. Phys. Chem. 92 (1988) 2925.Google Scholar
  17. [17]
    M. Brown, R.E. Peierls and E.A. Stern, Phys. Rev. B 15 (1977) 738.Google Scholar
  18. [18]
    B. Moraweck, A.J. Renouprez, E.K. Hlil and R. Baudoing-Savois, J. Phys. Chem. 97 (1993) 4288.Google Scholar
  19. [19]
    B. H. Davis, Stud. Surf. Sci. Catal. 75 (1992) 799.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Sung June Cho
    • 1
  • Ryong Ryoo
    • 2
  1. 1.National Research Laboratory for Clean Energy Technology, Department of Applied Chemical Engineering and the Research Institute for CatalysisChonnam National UniversityGwang-juKorea
  2. 2.Department of ChemistryKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations