Skip to main content
Log in

UV and Visible Raman Study of Thermal Deactivation in a NO x Storage Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In situ UV and visible Raman spectroscopy was used to characterize fresh and thermally aged NO x storage-reduction catalysts, Pt/Ba/Al2O3. From the presence, absence, and nature of certain features in the spectra depending on aging temperature, we conclude that sintering, oxide formation, and separation of components occurred in the thermally aged catalysts. As aging temperature increased, less atomic oxygen was generated on platinum but a high temperature form of oxide or more strongly bound oxygen species was formed. This coincided with a loss of oxidation activity with aging temperature. Under UV excitation, observation of the OH stretch of physisorbed H2O on aged Pt/Ba/Al2O3 indicated separation of Pt from γ-Al2O3, since this OH band was observed only on γ-Al2O3 (and Ba/Al2O3) but not on Pt/Al2O3. Nitrite/nitro species and NO (adsorbed on Pt) in aged Pt/Ba/Al2O3 indicate that Ba-containing particles are behaving somewhat independently from Pt and Al2O3, since these NO x species are observed only on Pt/Al2O3 but not on fresh Pt/Ba/Al2O3 under NO+O2 flow. Moreover, barium nitrate particles in aged Pt/Ba/Al2O3 are more crystalline, as shown by the intensity, width, and frequency of the nitrate peak, and possible photo-induced nitrite formation under UV excitation. Finally, a NO x species with a broad peak at ∼330 cm−1 appeared on fresh but not in aged Pt/Ba/Al2O3 (or γ-Al2O3, Pt/Al2O3, and Ba/Al2O3) which may indicate proximity of Pt and Ba-containing particles in fresh Pt/Ba/Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Miyoshi, S. Matsumoto, K. Katoh, T. Tanaka, J. Harada, N. Takahashi, K. Yokota, M. Sugiura and K. Kasahara, SAE Paper 950809 (1995).

  2. N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S. Matsumoto, T. Tanizawa, T. Tanaka, S. Tateishi and K. Kasahara, Catal. Today 27 (1996) 63.

    Google Scholar 

  3. D. James, E. Fourré, M. Ishii and M. Bowker, Appl. Catal. B 45 (2003) 147.

    Google Scholar 

  4. B.-H. Jang, T.-H. Yeon, H.-S. Han, Y.-K. Park and J.-E. Yie, Catal. Lett. 77 (2001) 21.

    Google Scholar 

  5. L.F. Liotta, A. Macaluso, G.E. Arena, M. Livi, G. Centi and G. Deganello, Catal. Today 75 (2002) 439.

    Google Scholar 

  6. E. Fridell, H. Persson, B. Westerberg, L. Olsson and M. Skoglundh, Catal. Lett. 66 (2000) 71.

    Google Scholar 

  7. L. Lietti, P. Forzatti, I. Nova and E. Tronconi, J. Catal. 204 (2001) 175.

    Google Scholar 

  8. A.J. Paterson, D.J. Rosenberg and J.A. Anderson, in: Studies in Surface Science and Catalysis, eds. A. Guerrero-Ruiz and I. Rodriguez-Ramos (Elsevier Science B.V., 2001) p. 429.

  9. C. Sedlmair, K. Seshan, A. Jentys and J.A. Lercher, J. Catal. 214 (2003) 308.

    Google Scholar 

  10. I. Nova, L. Castoldi, L. Lietti, E. Tronconi and P. Forzatti, Catal. Today 75 (2002) 431.

    Google Scholar 

  11. D. Uy, K.A. Wiegand, A.E. O'Neill, M.A. Dearth and W.H. Weber, J. Phys. Chem. B 106 (2002) 387.

    Google Scholar 

  12. T. Kobayashi, T. Yamada and K. Kayano, SAE Paper 970745 (1997).

  13. F. Rodrigues, L. Juste, C. Potvin, J.F. Tempère, G. Blanchard and G. Djèga-Mariadassou, Catal. Lett. 72 (2001) 59.

    Google Scholar 

  14. H. Mahzoul, J.F. Brilhac and P. Gilot, Appl. Catal. B 20 (1999) 47.

    Google Scholar 

  15. N.W. Cant and M.J. Patterson, Catal. Today 73 (2002) 271.

    Google Scholar 

  16. D. Uy, A. Dubkov, G.W. Graham and W.H. Weber, Catal. Lett. 68 (2000) 25.

    Google Scholar 

  17. D. Uy, A.E. O'Neill and W.H. Weber, Appl. Catal. B 35 (2002) 219.

    Google Scholar 

  18. D. Uy, A.E. O'Neill, L. Xu, W.H. Weber and R.W. McCabe, Appl. Catal. B 41 (2003) 269.

    Google Scholar 

  19. G.W. Graham, A.E. O'Neill, D. Uy, W.H. Weber, H. Sun and X.Q. Pan, Catal. Lett. 79 (2002) 99.

    Google Scholar 

  20. G. Mestl, J. Mol. Catal. A 158 (2000) 45.

    Google Scholar 

  21. F. Vratny and R.B. Fischer, Appl. Spectrosc. 14 (1960) 76.

    Google Scholar 

  22. S. Xie, E. Iglesia and A.T. Bell, J. Phys. Chem. B 105 (2001) 5144.

    Google Scholar 

  23. M.V. Pellow-Jarman, P.J. Hendra and R.J. Lehnert, Vib. Spectrosc. 12 (1996) 257.

    Google Scholar 

  24. D.N. Waters, Spectrochim. Acta 50A (1994) 1833.

    Google Scholar 

  25. C.E. Smith, J.P. Biberian and G.A. Somorjai, J. Catal. 57 (1979) 426.

    Google Scholar 

  26. J.L. Gland, B.A. Sexton and G.B. Fisher, Surf. Sci. 95 (1980) 587.

    Google Scholar 

  27. H. Knözinger and P. Ratnasamy, Catal. Rev.-Sci. Eng. 17 (1978) 31.

    Google Scholar 

  28. J.B. Peri, J. Phys. Chem. 69 (1965) 211.

    Google Scholar 

  29. A.A. Tsyganenko and P.P. Mardilovich, J. Chemi. Soc. Faraday Trans. 92 (1996) 4843.

    Google Scholar 

  30. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A. Theory and Applications in Inorganic Chemistry (John Wiley & Sons, Inc., New York, 1997).

    Google Scholar 

  31. I.A. Degen and G.A. Newman, Spectrochim. Acta 49A (1993) 859.

    Google Scholar 

  32. H. Niehus and G. Comsa, Surface Sci. Lett. 93 (1980) L147.

    Google Scholar 

  33. T. Matsushima, D.B. Almy and J.M. White, Surf. Sci. 67 (1977) 89.

    Google Scholar 

  34. R.W. McCabe, C. Wong and H.S. Woo, J. Catal. 114 (1988) 354.

    Google Scholar 

  35. O. Alexeev and B.C. Gates, in: Studies in Surface Science and Catalysis, Vol. 130, eds. A. Corma, F.V. Melo, S. Mendioroz and J.L.G. Fierro (2000) p. 371.

  36. A. Borgna, F. Le Normand, T. Garetto, C.R. Apesteguia and B. Moraweck, Catal. Lett. 13 (1992) 175.

    Google Scholar 

  37. C.-B. Wang and C.-T. Yeh, J. Catal. 178 (1998) 450.

    Google Scholar 

  38. L. Olsson and E. Fridell, J. Catal. 210 (2002) 340.

    Google Scholar 

  39. F. Prinetto, G. Ghiotti, L. Lietti, E. Tronconi and P. Forzatti, J. Phys. Chem. B 105 (2001) 12732.

    Google Scholar 

  40. V. Labalme, N. Benhamou, N. Guilhaume, E. Garbowski and M. Primet, Appl. Catal. A 133 (1995) 351.

    Google Scholar 

  41. W.A. Brown and D.A. King, J. Phys. Chem. B 104 (2000) 2578.

    Google Scholar 

  42. G.W. Graham, W.H. Weber, C.R. Peters and R. Usmen, J. Catal. 130 (1991) 310.

    Google Scholar 

  43. J.E. Spanier, R.D. Robinson, F. Zhang, S.-W. Chan and I.P. Herman, Phys. Rev. B: Condens. Matter 64 (2001) 245407.

    Google Scholar 

  44. L.K. Narayanswamy, Trans. Faraday Soc. 31 (1935) 1411.

    Google Scholar 

  45. R. Vogt and B.J. Finlayson-Pitts, J. Phys. Chem. 99 (1995) 17269.

    Google Scholar 

  46. D.M. Adams, Metal-Ligand and Related Vibrations: A Critical Survey of the Infrared and Raman Spectra of Metallic and Organometallic Compounds (Edward Arnold Ltd, London, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dairene Uy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uy, D., O'Neill, A.E., Li, J. et al. UV and Visible Raman Study of Thermal Deactivation in a NO x Storage Catalyst. Catalysis Letters 95, 191–201 (2004). https://doi.org/10.1023/B:CATL.0000027294.82952.c5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000027294.82952.c5

Navigation