Skip to main content
Log in

Catalytic Reduction of 4-Nitrobenzoic Acid by cis-[Rh(CO)2(Amine)2](PF6) Complexes Under Water–Gas Shift Reaction Conditions: Kinetics Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Rhodium(I) complexes of the type, cis-[Rh(CO)2(amine)2](PF6) where (amine = 3-picoline, 2-picoline, pyridine, 2,6-lutidina or 3,5-lutidine) dissolved in 80% aqueous amine solutions catalyzed the selective reduction of 4-nitrobenzoic acid to 4-aminobenzoic acid under CO atmosphere. The importance of these catalytic systems is their high chemo selectivity for the aromatic nitro group of the 4-nitrobenzoic acid with respect to the carboxylic group, allowing the production of the desired aromatic amine in high yields. The 4-aminobenzoic acid production depends on the nature of the coordinated amine. The Rh/3,5-lutidine system, the most active catalyst among tested, displays turnover frequencies for 4-aminobenzoic acid production of about 173 moles per mole Rh per day for [Rh] = 1 × 10−4 mol, [4-nitrobenzoic acid] = 3.82 × 10−3mol, 10 mL of 80% aqueous 3,5-lutidine, P(CO) = 0.9 atm at 100 °C. Analyses of kinetic results for the Rh/3,5-lutidine system show a first order dependence on 4-nitrobenzoic acid concentration, a non-linear dependence on CO pressure, a segmented Arrhenius plot and dependence on the nature of the reducing gas agent. These data are discussed in terms of a possible mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US Department of Health and Human Services. Technical Report Series No 442, 1994.

  2. H. Jurgen (ed) Encyclopedia of Industrial Chemistry, Ullmann's, (Wiley, Florida, 1985).

    Google Scholar 

  3. Y. Shvo and D. Czarkie, J. Organomet. Chem. 368 (1989) 357.

    Google Scholar 

  4. K. Nomura, M. Ishino and M. Hazama, J. Mol. Catal. 66 (1991) L19.

    Google Scholar 

  5. K. Nomura, M. Ishino and M. Hazama, J. Mol. Catal. 78 (1993) 273.

    Google Scholar 

  6. K. Nomura, J. Mol. Catal. 73 (1992) L1.

    Google Scholar 

  7. K. Kaneda, H. Kuwahara and T. Imanaka, J. Mol. Catal. 88 (1994) L267.

    Google Scholar 

  8. V. Macho, L. Vojeek, M. Schmidtova and M. Harustiak, J. Mol. Catal. 88 (1994) 177.

    Google Scholar 

  9. A.B. Taleb and G. Jenner, J. Mol. Catal. 91 (1994) L149.

    Google Scholar 

  10. M.M. Mdleleni, R.G. Rinker and P.C. Ford, J. Mol. Catal. 89 (1994) 283.

    Google Scholar 

  11. F. Ragaini, M. Pizzotti, S. Cenini, A. Abbotto, G.A. Pagani and F. Demartin, J. Organomet. Chem. 489 (1995) 107.

    Google Scholar 

  12. S.A. Moya, R. Sariego, P. Aguirre, R. Sartori and P. Dixneuf, Bull. Soc. Chim. Belg. 104 (1995) 19.

    Google Scholar 

  13. K. Nomura, J. Mol. Catal. A 95 (1995) 203.

    Google Scholar 

  14. F. Ragaini and S. Cenini, J. Mol. Catal. A 105 (1996) 145.

    Google Scholar 

  15. C. Linares, M. Mediavilla, A.J. Pardey, C. Longo, P. Baricelli and S.A. Moya, Bol. Soc. Chil. Quím. 43 (1998) 55.

    Google Scholar 

  16. K. Nomura, J. Mol. Catal. A 130 (1998) 1.

    Google Scholar 

  17. F. Ragaini, S. Cenini and M. Gasperini, J. Mol. Catal. A 174 (2001) 51.

    Google Scholar 

  18. A.J. Pardey, M. Fernández, A.B. Rivas, M.C. Ortega, C. Urbina, D. Moronta, C. Longo, M. Mediavilla, P.J. Baricelli and S.A. Moya, Inorg. Chim. Acta 329 (2002) 22.

    Google Scholar 

  19. C. Linares, M. Mediavilla, A.J. Pardey, P. Baricelli, C. Longo-Pardey and S.A. Moya, Catal. Lett. 50 (1998) 183.

    Google Scholar 

  20. P. Aguirre, S.A. Moya, R. Sariego, H. Le Bozec and A.J. Pardey, Appl. Organomet. Chem. 16 (2002) 597.

    Google Scholar 

  21. C. Longo, J. Alvarez, M. Fernández, A.J. Pardey, S.A. Moya, P. Baricelli and M.M. Mdleleni, Polyhedron 19 (2000) 487.

    Google Scholar 

  22. B. Denise and G. Pannetier, J. Organometal. Chem. 63 (1973) 423.

    Google Scholar 

  23. A.J. Pardey and P.C. Ford, J. Mol. Catal. 53 (1989) 247.

    Google Scholar 

  24. K. Schofield, Hetero-Aromatic Nitrogen Compounds (Plenum Press, New York, 1967) pp. 146–148.

    Google Scholar 

  25. J.C. Miller and J.N. Miller, Statistics for Analytical Chemistry (John Wiley & Sons, New York, 1984).

    Google Scholar 

  26. R.H. Crabtree and D.R. Anton, Organometallics 2 (1983) 855.

    Google Scholar 

  27. Y. Lin and R.G. Finke, Inorg. Chem. 33 (1994) 4891.

    Google Scholar 

  28. A.A. Frost and R.G. Pearson, Kinetics and Mechanism (Wiley, New York, 1961) p. 66.

    Google Scholar 

  29. A.J. Pardey, M. Fernández, J. Alvarez, C. Urbina, D. Moronta, V. Leon, M. Haukka and T.A. Pakkanen, Appl. Catal. A 199 (2000) 275.

    Google Scholar 

  30. G. Fachinetti, T. Funaioli and P.F. Zanazzi, J. Organomet. Chem. 460 (1993) C34.

    Google Scholar 

  31. G. Fachinetti, G. Fochi and T. Funaioli, Inorg. Chem. 33 (1994) 1719.

    Google Scholar 

  32. M.M. Millan, R.G. Rinker and P.C. Ford, J. Mol. Catal. 204 (2003) 125.

    Google Scholar 

  33. S.J. Skoog, J.P. Campbell and W.L. Gladfelter, Organometallics 13 (1994) 4137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo J. Baricelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, C., Lujano, E., Macias, U. et al. Catalytic Reduction of 4-Nitrobenzoic Acid by cis-[Rh(CO)2(Amine)2](PF6) Complexes Under Water–Gas Shift Reaction Conditions: Kinetics Study. Catalysis Letters 95, 143–150 (2004). https://doi.org/10.1023/B:CATL.0000027287.78214.bf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000027287.78214.bf

Navigation