Catalysis Letters

, Volume 95, Issue 3–4, pp 107–111 | Cite as

Gas-Phase Catalysis by Micelle Derived Au Nanoparticles on Oxide Supports

  • Ju Chou
  • Nathan R. Franklin
  • Sung-Hyeon Baeck
  • Thomas F. Jaramillo
  • Eric W. McFarland
Article

Abstract

The reactivity of gold clusters (8–22 nm diameter) supported on different metal oxides (titanium dioxide (TiO2), zinc oxide (ZnO), zirconium oxide (ZrO2), and silicon dioxide (SiO2)) was investigated in a continuous flow reactor. Clusters were encapsulated within polymer in toluene solution, impregnated onto the bulk supports, and reduced by calcination at 300 °C. Support dependent sintering (TiO2>ZrO2>ZnO) was observed following heating in air at 300 °C. For both CO oxidation and propylene hydrogenation, Au nanoclusters on TiO2 exhibit the highest activity compared to other supports.

nanoparticles catalysis CO oxidation propylene hydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Haruta and M. Date, Appl. Catal. A A 222 (2002) 427.Google Scholar
  2. 2.
    Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos, Science 301 (2003) 935.Google Scholar
  3. 3.
    J.M.C. Soares, P. Morrall, A. Crossley, P. Harris and M. Bowker, J. Catal. 219 (2003) 17.Google Scholar
  4. 4.
    M. Haruta, Catal. Today 36 (1997) 153.Google Scholar
  5. 5.
    T.A. Nijhuis, B.J. Huizinga, M. Makkee and J.A. Moulijn, Ind. Eng. Chem. Res. 38 (1999) 884.Google Scholar
  6. 6.
    T.V. Choudhary and D.W. Goodman, Top. Catal. 21 (2002) 25.Google Scholar
  7. 7.
    M. Valden, X. Lai and D.W. Goodman, Science 281 (1998) 1647.Google Scholar
  8. 8.
    T. Hayashi, K. Tanaka and M. Haruta, J. Catal. 178 (1998) 566.Google Scholar
  9. 9.
    M. Haruta, Cattech 6 (2002) 102.Google Scholar
  10. 10.
    P. Claus, A. Brückner, C. Mohr and H. Hofmeister, J. Am. Chem. Soc. 122 (2000) 11430.Google Scholar
  11. 11.
    C. Mohr, H. Hofmeister, J. Radnik and P. Claus, J. Am. Chem. Soc. 125 (2003) 1905.Google Scholar
  12. 12.
    B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen and K.J. Klabunde, Langmuir 18 (2002) 7515.Google Scholar
  13. 13.
    J.P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H-G. Boyen, P. Ziemann and B. Kabius, Langmuir 16 (2000) 407.Google Scholar
  14. 14.
    H.-G. Boyen, G. Kästle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J. P. Spatz, S. Riethmüller, C. Hartmann, M. Möller, G. Schmid, M.G. Garnier and P. Oelhafen, Science 297 (2002) 1533.Google Scholar
  15. 15.
    T.F. Jaramillo, S.H. Baeck, B.R. Cuenya and E.W. McFarland, J. Am. Chem. Soc. 125 (2003) 7148.Google Scholar
  16. 16.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin and R. Whyman, J. Chem. Soc. Chem. Commun. 7 (1994) 801.Google Scholar
  17. 17.
    A. Wolf and F. Schüth, Appl. Catal. A 226 (2002) 1.Google Scholar
  18. 18.
    J.M. Montejano-Carrizales, F. Aguilera-Granja and J.L. Moran-Lopez, NanoStruct. Mater. 8 (1997) 269.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Ju Chou
    • 1
  • Nathan R. Franklin
    • 1
  • Sung-Hyeon Baeck
    • 1
  • Thomas F. Jaramillo
    • 1
  • Eric W. McFarland
    • 1
  1. 1.Department of Chemical EngineeringUniversity of CaliforniaSanta Barbara

Personalised recommendations