Skip to main content
Log in

N2O Decomposition over Liquid Ion-Exchanged Fe-BEA Catalysts: Correlation Between Activity and the IR Intensity of Adsorbed NO at 1874 cm−1

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Various Fe-BEA catalysts have been synthesized by liquid ion-exchange, varying the iron precursor (nitrate, sulfate or chloride), the iron content (0.2–1.5 wt% Fe), and the conditions of activation, i.e. atmosphere (air or inert) and heating rate (5 or 20 K min−1). The catalysts were tested in direct N2O decomposition in the temperature range of 625–825 K. An optimal iron loading of 0.8 wt% Fe was found, with no significant influence of the used Fe-precursor. Activation of the ion-exchanged catalysts in inert gas yields significantly better performance than activation in air. NO adsorption combined with infrared analysis was used to characterize the various Fe2+ species present in the differently prepared Fe-BEA zeolites. A correlation exists between the absorption intensity of NO at 1874 cm−1 and the activity of the catalysts in N2O decomposition. This relationship, which can be used as a reliable and fast assessment of catalyst performance, suggests an important role of ferrous ions in the activity of these catalysts. Based on these results and previous mechanistic studies using transient techniques, the NO absorption band at 1874 cm−1 is tentatively assigned to oligonuclear oxocations in the zeolite channels, with general formula Fe x O y .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Pérez-Ramírez, G. Mul, F. Kapteijn and J.A. Moulijn, Chem. Commun. (2001) 693.

  2. J. Pérez-Ramírez, F. Kapteijn, X. Xu, G. Mul and J.A. Moulijn,Catal. Today 76 (2002) 55.

    Google Scholar 

  3. J. Pérez-Ramírez, F. Kapteijn, K. Schöffel and J.A. Moulijn, Appl. Catal. B. 44 (2001) 117.

    Google Scholar 

  4. H.-Y. Chen and W.M.H. Sachtler, Catal. Lett. 50 (1998) 125.

    Google Scholar 

  5. C. Pophal, T. Yogo, K. Yamada and K. Segawa, Appl. Catal. B 16 (1998) 117.

    Google Scholar 

  6. B. Coq, M. Mauvezin, G. Delahay, J.B. Butet and S. Kieger, Appl. Catal. B 27 (2000) 193.

    Google Scholar 

  7. R.Q. Long and R.T. Yang, Chem. Commun. (2000) 1651.

  8. G.I. Panov, V.I. Sobolev and A.S. Kharitonov, J. Mol. Catal. 61 (1990) 85.

    Google Scholar 

  9. A. Ribera, I.W.C.E. Arends, S. de Vries, J. Pérez-Ramírez and R. Sheldon, J. Catal. 195 (2000) 287.

    Google Scholar 

  10. J. Pérez-Ramírez and E.V. Kondratenko, Chem. Commun. (2003) 2152.

  11. R.Q. Long and R.T. Yang, Catal. Lett. 74 (2001) 201.

    Google Scholar 

  12. K. Krishna, G.B.F. Seijger, C.M. van den Bleek, M. Makkee, G. Mul and H.P. Calis, Catal. Lett. 86 (2003) 121.

    Google Scholar 

  13. A.A. Battiston, J.H. Bitter, F.M.F. de Groot, A.R. Overweg, O. Stephan, J.A. van Bokhoven, P.J. Kooyman, C. van der Spek, G. Vanko and D.C. Koningsberger, J. Catal. 213 (2003) 251.

    Google Scholar 

  14. F. Heinrich, C. Schmidt, E. Löffler, M. Menzel and W. Grünert, J. Catal. 212 (2002) 157.

    Google Scholar 

  15. J. Pérez-Ramírez, F. Kapteijn, J.C. Groen, A. Doménech, G. Mul and J.A. Moulijn, J. Catal. 214 (2003) 33.

    Google Scholar 

  16. J. Pérez-Ramírez, F. Kapteijn and A. Brückner, J. Catal. 218 (2003) 234.

    Google Scholar 

  17. M. Mauvezin, G. Delahay, F. Kisslich, B. Coq and S. Kieger, Catal. Lett. 62 (1999) 41.

    Google Scholar 

  18. B. Coq, M. Mauvezin, G. Delahay and S. Kieger, J. Catal. 195 (2000) 298.

    Google Scholar 

  19. M. Mauvezin, G. Delahay, B. Coq, S. Kieger, J.C. Jumas and J. Olivier-Furcade, J. Phys. Chem. B. 105 (2001) 928.

    Google Scholar 

  20. G. Delahay, M. Mauvezin, B. Coq and S. Kieger, J. Catal. 202 (2001) 156.

    Google Scholar 

  21. G. Delahay, M. Mauvezin, A. Guzmán-Vargas and B. Coq, Catal. Commun. 3 (2002) 385.

    Google Scholar 

  22. S. Kameoka, K. Kita, T. Takeda, S. Tanaka, S. Ito, K. Yuzaki, T. Miyadera and K. Kunimori, Catal. Lett. 69 (2000) 169.

    Google Scholar 

  23. S. Kameoka, K. Kita, S. Tanaka, T. Nobukawa, S. Ito, K. Tomishige, T. Miyadera and K. Kunimori, Catal. Lett. 79 (2002) 63.

    Google Scholar 

  24. J. Pérez-Ramírez, R.J. Berger, G. Mul, F. Kapteijn and J.A. Moulijn, Catal. Today, 63 (2001) 93.

    Google Scholar 

  25. G. Mul, J. Pérez-Ramírez, F. Kapteijn and J.A. Moulijn, Catal. Lett. 80 (2002) 129.

    Google Scholar 

  26. B.R. Wood, J.A. Reimer and A.T. Bell, J. Catal. 209 (2002) 151.

    Google Scholar 

  27. G. Berlier, A. Zecchina, G. Spoto, G. Ricchiardi, S. Bordiga and C. Lamberti, J. Catal. 215 (2003) 264.

    Google Scholar 

  28. K. Hadjiivanov, J. Saussey and J.C. Lavalley, Catal. Lett. 52 (1998) 103.

    Google Scholar 

  29. L.J. Lobree, I.C. Hwang, J.A. Reimer and A.T. Bell, Catal. Lett. 63 (1999) 233.

    Google Scholar 

  30. K. Hadjiivanov, H. Knözinger, B. Tsyntsarski and L. Dimitrov, Catal. Lett. 62 (1999) 35.

    Google Scholar 

  31. L.J. Lobree, C.M. Hwang, J.A. Reimer and A.T. Bell, J. Catal. 186 (1999) 242.

    Google Scholar 

  32. R.W. Joyner and M. Stockenhuber, J. Phys. Chem. B 103 (1999) 5963.

    Google Scholar 

  33. El.-M-El-Malki, R.A. van Santen and W.M.H. Sachter, J. Catal. 196 (2000) 212.

    Google Scholar 

  34. K.A. Dubkov, N.S. Ovansesyan, A.A. Shteinman, E.V. Starokon and G.I. Panov, J. Catal. 207 (2002) 341.

    Google Scholar 

  35. A. Zecchina, S. Bordiga, G. Spoto, A. Damin, G. Berlier, F. Bonino, C. Prestipino and C. Lamberti, Top. Catal. 21 (2002) 67.

    Google Scholar 

  36. E.V. Starokon, K.A. Dubkov, L.V. Pirutko and G.I. Panov, Top. Catal. 23 (2002) 137.

    Google Scholar 

  37. J. Pérez-Ramírez, F. Kapteijn, G. Mul and J.A. Moulijn, J. Catal. 208 (2002) 211.

    Google Scholar 

  38. G. Mul, J. Pérez-Ramírez, F. Kapteijn and J.A. Moulijn, Catal. Lett. 77 (2001) 7.

    Google Scholar 

  39. T. Nobukawa, S. Tanaka, S. Ito, K. Tomishige, S. Kameoka and K. Kunimori, Catal. Lett. 83 (2002) 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mul, G., Zandbergen, M., Kapteijn, F. et al. N2O Decomposition over Liquid Ion-Exchanged Fe-BEA Catalysts: Correlation Between Activity and the IR Intensity of Adsorbed NO at 1874 cm−1 . Catalysis Letters 93, 113–120 (2004). https://doi.org/10.1023/B:CATL.0000016958.22246.83

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000016958.22246.83

Navigation