Skip to main content
Log in

Transient Studies of Direct N2O Decomposition over Pt–Rh Gauze Catalyst. Mechanistic and Kinetic Aspects of Oxygen Formation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

For elucidating the mechanistic aspects of oxygen formation during N2O decomposition over commercial woven Pt–Rh gauze, transient experiments were carried out in the temporal analysis of products (TAP) reactor by pulsing N2 16O over 18O-pretreated gauze catalyst at temperatures typical of industrial ammonia burners (1073–1273 K). The transient responses of N2O and the products of its decomposition (O2 and N2) were fitted to two different mechanistic models. From the isotopic studies and the fitting of transient experiments, two separate routes of oxygen formation during catalytic N2O decomposition have been identified. Oxygen is produced via both (i) interaction of N2O with adsorbed oxygen species formed from N2O and (ii) recombination of adsorbed oxygen species on the catalyst surface. The relative contribution of these reaction pathways depends on the reaction temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Perez-Ramirez, F. Kapteijn, G. Mul, X. Xu and J. A. Moulijn, Catal. Today 76 (2002) 55.

    Google Scholar 

  2. J. Perez-Ramírez, F. Kapteijn, K. Schoffel and J. A. Moulijn, Appl. Catal. B: Environ. 44 (2003) 117.

    Google Scholar 

  3. C. N. Hinshelwood and C. R. Prichard, J. Chem. Soc. 127 (1925) 327.

    Google Scholar 

  4. L. Riekert and M. Staib, Berichte der Bunsengesellschaft 67 (1963) 976.

    Google Scholar 

  5. C. G. Takoudis and L. D. Schmidt, J. Catal. 80 (1983) 274.

    Google Scholar 

  6. E. W. R. Steacie and J. W. McCubbin, J. Chem. Phys. 2 (1934) 585.

    Google Scholar 

  7. E. W. R. Steacie and J. W. McCubbin, Can. J. Res. 14B (1936) 84.

    Google Scholar 

  8. T. Hahn and H.-G. Lintz, Zeitschrift fur Physikalische Chemie 186 (1994) 195.

    Google Scholar 

  9. L. Riekert, D. Menzel and M. Staib, 3rd International Congress on Catalysis, 1965, p. 387.

  10. S.-I. Tanaka, K. Yuzaki, S.-I. Ito, H. Uetsuka, S. Kameoka and K. Kunimori, Catal. Today 63 (2000) 413.

    Google Scholar 

  11. S.-I. Tanaka, K. Yuzaki, S.-I. Ito, S. Kameoka and K. Kunimori, J. Catal. 200 (2001) 203.

    Google Scholar 

  12. F. Kapteijn, J. Rodriguez-Mirasol and J. A. Moulijn, Appl. Catal. B: Environ. 9 (1996) 25.

    Google Scholar 

  13. J. T. Gleaves, G. S. Yablonsky, P. Phanawadee and Y. Schuurman, Appl. Catal. A: Gen. 160 (1997) 55.

    Google Scholar 

  14. M. Soick, D. Wolf and M. Baerns, Chem. Eng. Sci. 55 (2000) 2875.

    Google Scholar 

  15. E. V. Kondratenko, R. Krahnert, M. Baerns and J. Perez-Ramirez (in preparation).

  16. G. A. Papapolymerou and L. D. Schmidt, Langmuir 1 (1985) 488.

    Google Scholar 

  17. C. T. Campbell, G. Ertl, H. Kuipers and J. Segner, Surf. Sci. 107 (1981) 220.

    Google Scholar 

  18. D. H. Parker, M. E. Bartram and B. E. Koel, Surf. Sci. 217 (1989) 489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgueni V. Kondratenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondratenko, E.V., Pérez-Ramírez, J. Transient Studies of Direct N2O Decomposition over Pt–Rh Gauze Catalyst. Mechanistic and Kinetic Aspects of Oxygen Formation. Catalysis Letters 91, 211–216 (2003). https://doi.org/10.1023/B:CATL.0000007157.87417.fe

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000007157.87417.fe

Navigation