Skip to main content
Log in

Influence of Osteoprotegerin (OPG) on Resorption of Heterotopically Induced Ossicle

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

In this paper, the effect of osteoprotegerin (OPG) on slowing down the resorption process of heterotopically induced bone tissue is described. The induced ossicle is resorbed ex inactivitate. This system mimics osteoporosis in immobilised skeletal bones. Bone induction was achieved in BALB/c mice after the injection of the suspension of 3 × 106 HeLa cells into thigh muscle of animals immuno-suppressed by a single dose of hydrocortisone. To slow down the process of resorption we applied OPG and measured quantitatively the effect by weighing the mass of mineral deposited in the induced ossicle after hydrolysis of soft tissues surrounding the induced ossicles. As the effect of application of OPG more than 340–540% of bone mineral is found in the induced ossicles following nine applications of 0.05 mg OPG per mouse, every second day — in comparison to the control animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson H.C., Marker P.C. and Fogh J. 1964. Formation of tumors containing bone after intramuscular injection of transformed human amnion cells (FL) into cortisone-treated mice. Am. J. Pathol. 54: 507–513.

    Google Scholar 

  • Burger E.H., van der Meer J.W.M. and Nijweide J. 1984. Osteoclast formation from mononuclear phagocytes: Role of bone forming cells. J. Cell Biol. 99: 1901–1906.

    Google Scholar 

  • Grigoriadis A., Wang Z., Cechini M., Hofstetter W., Felix R., Fleisch H. and Wagner E. 1994. c-Fos. - a key regulator of osteoclast - macrophage lineage determination and bone remodeling. Science 266: 443–444.

    Google Scholar 

  • Hofbauer L.C. and Heufelder A.E. 1998. Osteoprotegerin and its cognate ligand: a new paradigm of osteoclastogenesis. Eur. J. Endocrinol. 139: 152–154.

    Google Scholar 

  • Kochanowska I.E., Włodarski K., Wojtowicz A. and Ostrowski K. 2002a. BMP-4 and BMP-6 involvement in the osteogenic properties of the HeLa cell line. Exp. Biol.Med. 227: 57–62.

    Google Scholar 

  • Kochanowska I.E., Włodarski K., Wojtowicz A., Niemira K. and Ostrowski K. 2002b. Osteogenic properties of various HeLa cell lines and the BMP family genes expression. Ann. Transplant. 7: 61–66.

    Google Scholar 

  • Martin T.J. and Ng K.W. 1994. Mechanism by which cells of the osteoblast lineage control osteoclast formation and activity. J. Cell Biochem. 56: 357–366.

    Google Scholar 

  • Suda T., Udagawa N., Nakamura I., Miyaura C. and Takahashi N. 1995. Modulation of osteoclast differentiation by local factors. Bone 17(Suppl. 2): 87S–91S.

    Google Scholar 

  • Suda T., Kobayashi K., Jimi E., Udagawa N. and Takahashi N. 2001. The molecular basis of osteoclast differentiation and activation. Novartis Found Symp. pp. 235–247.

  • Sun L.J., Peterson B.R. and Verdine G.L. 1997. Dual role of the NFAT insert region in DNA recognition and cooperative contacts to AP-1. Proc. Natl Acad. Sci. USA 94: 4919–4924.

    Google Scholar 

  • Takai H., Kanematsu M., Yanopk K., Tsuda E., Higashio K., Ikeda K., Watanabe K. and Yamada Y. 1998. Transforming growth factor beta stimulates the production of osteoprotegerin/ osteoclastogenesis inhibitory factor by bone marrow stromal cells. J. Biol. Chem. 273: 27091–27096.

    Google Scholar 

  • Takayanagi H., Ogasawara K., Hida S., Chiba T., Murata S., Sato K., Takaoka A., Yokochi T., Oda H., Tanaka K., Nakamura K. and Taniguchi T. 2000. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408: 600–605.

    Google Scholar 

  • Takayanagi H., Kim S., Matsudo K., Suzuki H., Suzuki T., Sato K., Yokochi T., Oda H., Nakamura K., Ida N., Wagner E.F. and Taniguchi T. 2002a. RANKL maintaines bone homeostasis through s-Fos-dependent induction of interferon beta. Nature 416: 744–749.

    Google Scholar 

  • Takayanagi H., Kim S., Koga T., Nishina H., Isshiki M., Yoshida H., Saiura A., Isobe M., Yokochi T., Inoue J., Wagner E.F., Mak T.W., Kodama T. and Taniguchi T. 2002b. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3(6): 889–901.

    Google Scholar 

  • Teitelbaum S.L. 2000. Bone resorption by osteoclasts. Science 289: 1504–1508.

    Google Scholar 

  • Yasuda H., Shima N., Nakagawa N., Yamaguchi K., Kinosaki M., Goto M., Mochizuki S.J., Tsuda E., Morinaga T., Udagawa N., Takahashi N., Suda T. and Hifashiomi K. 1999. A novel molecular mechanism modulating osteoclast differentiation and function. Bone 25: 109–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazimierz Ostrowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochanowska, I., Włodarski, K., Pienkowski, M. et al. Influence of Osteoprotegerin (OPG) on Resorption of Heterotopically Induced Ossicle. Cell Tissue Banking 5, 125–128 (2004). https://doi.org/10.1023/B:CATB.0000034095.83717.23

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATB.0000034095.83717.23

Navigation