Skip to main content
Log in

Roles of Hepatocyte Growth Factor and Mast Cells in Thrombosis and Angiogenesis

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Concentrations of the circulating hepatocyte growth factor (HGF) increase in the very early phase of acute myocardial infarction, and are a marker of arterial thrombosis. A recently developed, highly sensitive HGF assay can detect the early stages of arterial thrombosis in patients with unstable angina pectoris, acute aortic dissection and pulmonary thromboembolism.

Heparin rapidly induces the release of HGF into the circulation, and HGF is a major factor involved in heparin-induced angiogenesis. Furthermore, the activation of mast cells by thrombus formation releases HGF into the circulation. This new pathway, thrombus formation-mast cell activation- degranulation-heparin-HGF-angiogenesis, may be both diagnostically useful and a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakamura T. Structure and function of hepatocyte growth factor. Prog Growth Factor Res 1991;3:67–85.

    Google Scholar 

  2. Uehara Y, Minowa O, Mori C, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/ scatter factor. Nature 1995;373:702–705.

    Google Scholar 

  3. Gherardi E, Gray J, Stoker M, Perryman M, Furlong R. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc Natl Acad Sci USA 1989;86:5844–5848.

    Google Scholar 

  4. Montesano R, Matsumoto K, Nakamura T, Orchi L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991;67:901–908.

    Google Scholar 

  5. Bussolino F, DiRezo MF, Ziche M, et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992;119:629- 641.

    Google Scholar 

  6. Grant DS, Kleinman HK, Goldberg ID, et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA 1993;90:1937–1941.

    Google Scholar 

  7. Matsumori A, Furukawa Y, Hashimoto T, et al. Increased circulating hepatocyte growth factor in the early stage of acute myocardial infarction. Biochem Biophys Res Commun 1996;221:391–395.

    Google Scholar 

  8. Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. Enhanced expression of hepatocyte growth factor/c-met by myocardial ischemia and reperfusion in a rat model. Circulation 1997;95:2552–2558.

    Google Scholar 

  9. Matsumori A, Ono K, Furukawa Y, Okada M, Sasayama S. Circulating hepatocyte growth factor as an early marker of arterial thrombus formation. Jpn Circ J 1998;62:311- 313.

    Google Scholar 

  10. Matsumori A, Miyazaki S, Takano H, et al. Circulating hepatocyte growth factor as a marker of thrombus formation in unstable angina pectoris. Jpn Circ J 2000;64:805–807.

    Google Scholar 

  11. Tsubouchi H, Niitani Y, Hirono S, et al. Levels of the human hepatocyte growth factor in serum of patients with various liver diseases determined by an enzyme-linked immunosorbent assay. Hepatology 1991;13:1–5.

    Google Scholar 

  12. Matsumori A, Takano H, Obata JE, et al. Circulating hepatocyte growth factor as a diagnostic marker of thrombus formation in patients with cerebral infarction. Circ J 2002;66:216–218.

    Google Scholar 

  13. Hata N, Matsumori A, Yokoyama S, et al. Hepatocyte growth factor and cardiovascular thrombosis in patients admitted to the intensive care unit. Circ J 2004;68:645–649.

    Google Scholar 

  14. Katoh H, Shimada T, Inoue S, et al. Reduced high serum hepatocyte growth factor levels after successful cardioversion in patients with atrial fibrillation. Clin Exp Pharmacol Physiol 2004;31:145–151.

    Google Scholar 

  15. Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982;297:307–312.

    Google Scholar 

  16. Fujita M, Sasayama A, Asanoi H, Nakajima H, Sakai O, Ohno A. Improvement of treadmill capacity and collateral circulation as a result of exercise with heparin pretreatment in patients with effort angina. Circulation 1988;77:1022–1029.

    Google Scholar 

  17. Lyon M, Gallagher JT. Hepatocyte growth factor/scatter factor: A heparin sulphate-binding pleiotropic growth factor. Biochem Soc Trans 1994;22:365–370.

    Google Scholar 

  18. Lamszus K, Joseph A, Jin L, et al. Scatter factor binds to thrombospondin and other extracellular matrix components. Am J Pathol 1996;149:805–819.

    Google Scholar 

  19. Naka D, Ishii T, Shimomura T, Hishida T, Hara H. Heparin modulates the receptor-binding and mitogenic activity of hepatocyte growth factor on hepatocytes. Exp Cell Res 1993;209:317–324.

    Google Scholar 

  20. Matsumoto K, Nakamura T. Heparin functions as a hepatotrophic factor by inducing production of hepatocyte growth factor. Biochem Biophys Res Commun 1996;227:455–461.

    Google Scholar 

  21. Taniguchi T, Toi M, Tominaga T. Rapid induction of hepatocyte growth factor by heparin. Lancet 1994;344:470.

    Google Scholar 

  22. Matsumori A, Ono K, Okada M, Miyamoto T, Sato Y, Sasayama S. Immediate increase in circulating hepatocyte growth factor/scatter factor by heparin. JMol Cell Cardiol 1998;30:2145–2149.

    Google Scholar 

  23. Jackson RL, Busch SJ, Cardin AD. Glycosaminoglycans: Molecular properties, protein interactions, and role in physiological processes. Physiol Rev 1991;71:481–539.

    Google Scholar 

  24. Norrby K, Sörbo J. Heparin enhances angiogenesis by a systemic mode of action. Int J Exp Path 1992;73:147–155.

    Google Scholar 

  25. Carroll SM, White FC, Roth DM, Bloor CM. Heparin accelerates coronary collateral development in a porcine model of coronary artery occlusion. Circulation 1993;88:198- 207.

    Google Scholar 

  26. Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher JT. Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem 1994;269:11216–11223.

    Google Scholar 

  27. Ashikari S, Habuchi H, Kimata K. Characterization of heparan sulfate oligosaccharides that bind to hepatocyte growth factor. J Biol Chem 1995;270:29586–29593.

    Google Scholar 

  28. Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell 1991;64:867–869.

    Google Scholar 

  29. Saksela O, Moscatelli D, Sommer A, Rifkin DB. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 1988;107:743–751.

    Google Scholar 

  30. Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993;4:1317- 1326.

    Google Scholar 

  31. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membrane. Am J Pathol 1988;130:393–400.

    Google Scholar 

  32. Miyazawa K, Shimomura T, Naka D, Kitamura N. Proteolytic activation of hepatocyte growth factor in response to tissue injury. J Biol Chem 1994;269:8966–8970.

    Google Scholar 

  33. Naka D, Ishii T, Shimomura T, Hishida T, Hara H. Heparin modulates the receptor-binding and mitogenic activity of hepatocyte growth factor on hepatocytes. Exp Cell Res 1993;209:317–324.

    Google Scholar 

  34. Ishai-Michaeli R, Svahn CM, Weber M, et al. Importance of size and sulfation of heparin in release of basic fibroblast growth factor from the vascular endothelium and extracellular matrix. Biochemistry 1992;31:2080–2088.

    Google Scholar 

  35. Naldini L, Weidner KM, Vigna E, et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 1991;10:2867–2878.

    Google Scholar 

  36. Nakao T, Arii S, Kaido T, et al. Heparin accelerates liver regeneration following portal branch ligation in normal and cirrhotic rats with increased plasma hepatocyte growth factor levels. J Hepatol 2002;37:87–92.

    Google Scholar 

  37. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997;77:1033–1079.

    Google Scholar 

  38. Sorbo J, Jakobsson A, Norrby K. Mast-cell histamine is angiogenic through receptors for histamine l and histamine 2. Int J Exp Pathol 1994;75:43–50.

    Google Scholar 

  39. Fajardo LF, Kwan HH, Kowalski J, Prionas SD, Allison, AC. Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 1992;140:539–544.

    Google Scholar 

  40. Blair RJ, Meng H, Marchese MJ, et al. Human mast cells stimulate vascular tube formation: Tryptase is a novel, potent angiogenic factor. J Clin Invest 1997;99:2691–2700.

    Google Scholar 

  41. Kinoshita M, Miyamoto T, Ohashi N, Sasayama S, Matsumori A. Thrombosis increases circulatory hepatocyte growth factor by degranulation of mast cells. Circulation 2002;106:3133–3138.

    Google Scholar 

  42. Haralabopoulos GC, Grant DS, Kleinman HK, Maragoudakis ME. Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am J Physiol 1997;273:C239-C245.

    Google Scholar 

  43. Strukova SM, Dugina TN, Khlgatian SV, Redkozubov AE, Redkozubova GP, Pinelis VG. Thrombin-mediated events implicated in mast cell activation. Semin Thromb Hemost 1996;22:145–150.

    Google Scholar 

  44. Cirino G, Cicala C, Bucci MR, Sorrentino L, Maraganore JM, Stone SR. Thrombin functions as an inflammatory mediator through activation of its receptor. J Exp Med 1996;183:821- 827.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumori, A. Roles of Hepatocyte Growth Factor and Mast Cells in Thrombosis and Angiogenesis. Cardiovasc Drugs Ther 18, 321–326 (2004). https://doi.org/10.1023/B:CARD.0000041252.33870.74

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CARD.0000041252.33870.74

Navigation