Skip to main content
Log in

Gene expression profiling after irradiation: Clues to understanding acute and persistent responses?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR) is an ever-present hazard to humans primarily due to its mutagenic, carcinogenic, and cell killing ability. In addition to causing DNA damage, irradiation initiates a plethora of signal transduction cascades responsible for maintaining cellular homeostasis and promoting interactions with neighboring cells. Large-scale changes in gene expression have also been found after irradiation, and microarrays have helped discern these subsequent transcriptional alterations. While some studies have focused on low dose-rate experiments, others have analyzed the gene expression response of IR compared to other DNA damaging agents. Very few genes have been found to be consistently up-regulated by IR, but that set includes GADD45, CDKN1A, and genes associated with the nucleotide excision repair pathway. Overall, the immediate transcriptional responses to IR have implications for DNA repair, cell cycle arrest, growth control, and cell signaling. Additionally, there is a substantial p53-independent component to the transcriptional profile that could be exploited to increase the effectiveness of radiotherapy. Initial characterizations of the persistent responses to IR yielded a completely different profile than observed immediately after exposure. This profile is ephemeral, shifting even over the course of one set of experiments. Microarray analysis of radiation responses has also been applied to clinical response to radiotherapy, identifying genes linked to radio-sensitivity and resistance in B-cell chronic lymphoid leukemia and cervical cancer. Overall, these large-scale gene expression studies have added to the understanding of the complicated biological responses to IR, and when combined with other data sets will yield a complete picture of the short and long-term consequences of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackson SP: Sensing and repairing DNA double-strand breaks. Carcinogenesis 23: 687–696, 2002

    Google Scholar 

  2. Iliakis G, Wang Y, Guan J, Wang H: DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22: 5834–5847, 2003

    PubMed  Google Scholar 

  3. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S: MAPK pathways in radiation responses. Oncogene 22: 5885–5896, 2003

    PubMed  Google Scholar 

  4. Dent P, Yacoub A, Contessa J, Caron R, Amorino G, Valerie K, Hagan MP, Grant S, Schmidt-Ullrich R: Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 159: 283–300, 2003

    PubMed  Google Scholar 

  5. McBride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F: The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 22: 5755–5773, 2003

    PubMed  Google Scholar 

  6. Hallahan DE: Radiation-mediated gene expression in the pathogenesis of the clinical radiation response. Semin Radiat Oncol 6: 250–267, 1996

    PubMed  Google Scholar 

  7. Boothman DA, Bouvard I, Hughes EN: Identification and characterization of X-ray-induced proteins in human cells. Cancer Res 49: 2871–2878, 1989

    PubMed  Google Scholar 

  8. Fornace AJ Jr.: Mammalian genes induced by radiation; activation of genes associated with growth control. Annu Rev Genet 26: 507–526, 1992

    PubMed  Google Scholar 

  9. Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW: Ionizing radiation regulates expression of the c-jun protooncogene. Proc Natl Acad Sci USA 87: 5663–5666, 1990

    PubMed  Google Scholar 

  10. Weichselbaum RR, Hallahan D, Fuks Z, Kufe D: Radiation induction of immediate early genes: Effectors of the radiation-stress response. Int J Radiat Oncol Biol Phys 30: 229–234, 1994

    PubMed  Google Scholar 

  11. Boothman DA, Meyers M, Fukunaga N, Lee SW: Isolation of X-ray-inducible transcripts from radioresistant human melanoma cells. Proc Natl Acad Sci USA 90: 7200–7204, 1993

    PubMed  Google Scholar 

  12. Kolesnick R, Fuks Z: Radiation and ceramide-induced apoptosis. Oncogene 22: 5897–5906, 2003

    PubMed  Google Scholar 

  13. Papathanasiou MA, Kerr NC, Robbins JH, McBride OW, Alamo I Jr., Barrett SF, Hickson ID, Fornace AJ Jr.: Induction by ionizing radiation of the gadd45 gene in cultured human cells: Lack of mediation by protein kinase C. Mol Cell Biol 11: 1009–1016, 1991

    PubMed  Google Scholar 

  14. Burns TF, El-Deiry WS: Microarray analysis of p53 target gene expression patterns in the spleen and thymus in response to ionizing radiation. Cancer Biol Ther 2: 431–443, 2003

    PubMed  Google Scholar 

  15. Amundson SA, Do KT, Fornace AJ Jr.: Induction of stress genes by low doses of gamma rays. Radiat Res 152: 225–231, 1999

    PubMed  Google Scholar 

  16. Amundson SA, Do KT, Shahab S, Bittner M, Meltzer P, Trent J, Fornace AJ Jr.: Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat Res 154: 342–346, 2000

    PubMed  Google Scholar 

  17. Amundson SA, Lee RA, Koch-Paiz CA, Bittner ML, Meltzer P, Trent JM, Fornace AJ Jr.: Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1: 445–452, 2003

    PubMed  Google Scholar 

  18. Azzam EI, de Toledo SM, Little JB: Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Res 63: 7128–7135, 2003

    PubMed  Google Scholar 

  19. Amundson SA, Bittner M, Chen Y, Trent J, Meltzer P, Fornace AJ Jr.: Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene 18: 3666–3672, 1999

    PubMed  Google Scholar 

  20. Jen KY, Cheung VG: Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res 13: 2092–2100, 2003

    PubMed  Google Scholar 

  21. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121, 2001

    PubMed  Google Scholar 

  22. Stassen T, Port M, Nuyken I, Abend M: Radiation-induced gene expression in MCF-7 cells. Int J Radiat Biol 79: 319–331, 2003

    PubMed  Google Scholar 

  23. Heinloth AN, Shackelford RE, Innes CL, Bennett L, Li L, Amin RP, Sieber SO, Flores KG, Bushel PR, Paules RS: ATM-dependent and-independent gene expression changes in response to oxidative stress, gamma irradiation, and UV irradiation. Radiat Res 160: 273–290, 2003

    PubMed  Google Scholar 

  24. Li Z, Xia L, Lee LM, Khaletskiy A, Wang J, Wong JY, Li JJ: Effector genes altered in MCF-7 human breast cancer cells after exposure to fractionated ionizing radiation. Radiat Res 155: 543–553, 2001

    PubMed  Google Scholar 

  25. Marko NF, Dieffenbach PB, Yan G, Ceryak S, Howell RW, McCaffrey TA, Hu VW: Does metabolic radiolabeling stimulate the stress response? Gene expression profiling reveals differential cellular responses to internal beta vs. external gamma radiation. Faseb J 17: 1470–1486, 2003

    PubMed  Google Scholar 

  26. Heinloth AN, Shackelford RE, Innes CL, Bennett L, Li L, Amin RP, Sieber SO, Flores KG, Bushel PR, Paules RS: Identification of distinct and common gene expression changes after oxidative stress and gamma and ultraviolet radiation. Mol Carcinog 37: 65–82, 2003

    PubMed  Google Scholar 

  27. Balcer-Kubiczek EK, Zhang XF, Harrison GH, Zhou XJ, Vigneulle RM, Ove R, McCready WA, Xu JF: Delayed expression of hpS2 and prolonged expression of CIP1/WAF1/SDI1 in human tumor cells irradiated with X-rays, fission neutrons or 1 GeV/nucleon Fe ions. Int J Radiat Biol 75: 529–541, 1999

    PubMed  Google Scholar 

  28. Robles AI, Bemmels NA, Foraker AB, Harris CC: APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res 61: 6660–6664, 2001

    PubMed  Google Scholar 

  29. Adimoolam S, Ford JM: p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci USA 99: 12985–12990, 2002

    PubMed  Google Scholar 

  30. Kuraoka I, Bender C, Romieu A, Cadet J, Wood RD, Lindahl T: Removal of oxygen free-radical-induced 50,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc Natl Acad Sci USA 97: 3832–3837, 2000

    PubMed  Google Scholar 

  31. Park WY, Hwang CI, Im CN, Kang MJ, Woo JH, Kim JH, Kim YS, Kim H, Kim KA, Yu HJ, Lee SJ, Lee YS, Seo JS: Identification of radiation-specific responses from gene expression profile. Oncogene 21: 8521–8528, 2002

    PubMed  Google Scholar 

  32. Chaudhry MA, Chodosh LA, McKenna WG, Muschel RJ: Gene expression profile of human cells irradiated in G1 and G2 phases of cell cycle. Cancer Lett 195: 221–233, 2003

    PubMed  Google Scholar 

  33. Chen X, Shen B, Xia L, Khaletzkiy A, Chu D, Wong JY, Li JJ: Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res 62: 1213–1221, 2002

    PubMed  Google Scholar 

  34. Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ: Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14: 981–993, 2000

    PubMed  Google Scholar 

  35. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M: Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29: 365–371, 2001

    PubMed  Google Scholar 

  36. Falt S, Holmberg K, Lambert B, Wennborg A: Long-term global gene expression patterns in irradiated human lymphocytes. Carcinogenesis 24: 1837–1845, 2003

    PubMed  Google Scholar 

  37. Sonis ST, Scherer J, Phelan S, Lucey CA, Barron JE, O'Donnell KE, Brennan RJ, Pan H, Busse P, Haley JD: The gene expression sequence of radiated mucosa in an animal mucositis model. Cell Prolif 35 (Suppl 1): 93–102, 2002

    Google Scholar 

  38. Kruse JJ, Te Poele JA, Velds A, Kerkhoven RM, Boersma LJ, Russell NS, Stewart FA: Identification of differentially expressed genes in mouse kidney after irradiation using microarray analysis. Radiat Res 161: 28–38, 2004

    PubMed  Google Scholar 

  39. Kitahara O, Katagiri T, Tsunoda T, Harima Y, Nakamura Y: Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia 4: 295–303, 2002

    PubMed  Google Scholar 

  40. Harima Y, Sawada S, Miyazaki Y, Kin K, Ishihara H, Imamura M, Sougawa M, Shikata N, Ohnishi T: Expression of Ku80 in cervical cancer correlates with response to radiotherapy and survival. Am J Clin Oncol 26: E80–E85, 2003

    PubMed  Google Scholar 

  41. Chan JY, Chen LK, Chang JF, Ting HM, Goy C, Chen JL, Hwang JJ, Chen FD, Chen DJ, Ngo FQ: Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80: Analysis by cDNA microarray. J Radiat Res (Tokyo) 42: 371–385, 2001

    Google Scholar 

  42. Vallat L, Magdelenat H, Merle-Beral H, Masdehors P, Potocki de Montalk G, Davi F, Kruhoffer M, Sabatier L, Orntoft TF, Delic J: The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 101: 4598–4606, 2003

    PubMed  Google Scholar 

  43. Ding GR, Honda N, Nakahara T, Tian F, Yoshida M, Hirose H, Miyakoshi J: Radiosensitization by inhibition of IkappaB-alpha phosphorylation in human glioma cells. Radiat Res 160: 232–237, 2003

    PubMed  Google Scholar 

  44. Fornace AJ Jr., Alamo I Jr., Hollander MC: DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA 85: 8800–8804, 1988

    PubMed  Google Scholar 

  45. Hollander MC, Alamo I, Jackman J, Wang MG, McBride OW, Fornace AJ Jr.: Analysis of the mammalian gadd45 gene and its response to DNA damage. J Biol Chem 268: 24385–24393, 1993

    PubMed  Google Scholar 

  46. Sakamoto-Hojo ET, Mello SS, Pereira E, Fachin AL, Cardoso RS, Junta CM, Sandrin-Garcia P, Donadi EA, Passos GA: Gene expression profiles in human cells submitted to genotoxic stress. Mutat Res 544: 403–413, 2003

    PubMed  Google Scholar 

  47. Guo G, Yan-Sanders Y, Lyn-Cook BD, Wang T, Tamae D, Ogi J, Khaletskiy A, Li Z, Weydert C, Longmate JA, Huang TT, Spitz DR, Oberley LW, Li JJ: Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol Cell Biol 23: 2362–2378, 2003

    PubMed  Google Scholar 

  48. Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, Brown JM: Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci USA 99: 8778–8783, 2002

    PubMed  Google Scholar 

  49. Ford BN, Wilkinson D, Thorleifson EM, Tracy BL: Gene expression responses in lymphoblastoid cells after radiation exposure. Radiat Res 156: 668–671, 2001

    PubMed  Google Scholar 

  50. Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ: Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int J Radiat Biol 79: 759–775, 2003

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, A.R., Morgan, W.F. Gene expression profiling after irradiation: Clues to understanding acute and persistent responses?. Cancer Metastasis Rev 23, 259–268 (2004). https://doi.org/10.1023/B:CANC.0000031765.17886.fa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CANC.0000031765.17886.fa

Navigation