Skip to main content
Log in

Stem Cells and Prenatal Origin of Breast Cancer

  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

The hypothesis that in utero exposure to pregnancy hormones, notably estrogens, is related to the occurrence of breast cancer in the offspring has been examined in a number of epidemiological and experimental studies. Many studies have provided direct or indirect evidence that supports the hypothesis of an intrauterine component in the origin of breast cancer. Human studies to examine the underlying biological mechanisms, however, have been limited. We review the likely role of stem cells in hormone-mediated carcinogenic process, particularly as intermediate steps between in utero exposure to hormones and breast cancer. We summarize also studies related to the assumptions of the hypothesis concerning in utero exposure. We propose the use of stem cell potential as a measurable variable of the ‘fertile soil’, a term that has been used to characterize the consequences of fetal exposure to intrauterine environment. We conclude by outlining a feasible population-based study that measures stem cell potential to explore mechanisms mediating the relation between in utero exposure to pregnancy hormones and breast cancer risk in the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trichopoulos D (1990) Hypothesis: does breast cancer originate in utero? Lancet 335: 939–940.

    Article  PubMed  Google Scholar 

  2. Trichopoulos D (2003) Intrauterine environment, mammary gland mass and breast cancer risk. Breast Cancer Res 5: 42–44.

    Article  PubMed  Google Scholar 

  3. Ekbom A, Trichopoulos D, Adami H-O, Hsieh C-c, Lan S-J (1992) Evidence of prenatal influences on breast cancer risk. Lancet 340: 1015–1018.

    Article  PubMed  Google Scholar 

  4. Sandson TA, Wen PY, LeMay M (1992) Reversed cerebral asymmetry in women with breast cancer. Lancet 340: 1015–1018.

    Article  PubMed  Google Scholar 

  5. Hilakivi-Clarke L, Cho E, Raygada M, Onojafe I, Clarke R, Lippman ME (1995) Early life affects the risk of developing breast cancer. Ann N Y Acad Sci 768: 327–330.

    PubMed  Google Scholar 

  6. Michels KB, Trichopoulos D, Robins JM, et al. (1996) Birthweight as a risk factor for breast cancer. Lancet 348: 1542–1546.

    Article  PubMed  Google Scholar 

  7. Sanderson M, Williams MA, Malone KE, et al. (1996) Perinatal factors and risk of breast cancer. Epidemiology 7: 34–37.

    PubMed  Google Scholar 

  8. Ekbom A, Hsieh C-c, Lipworth L, Adami H-O, Trichopoulos D (1997) Intrauterine environment and breast cancer risk in women: a population-based study. J Natl Cancer Inst 89: 71–76.

    Article  PubMed  Google Scholar 

  9. Hilakivi-Clarke L, Clarke R, Onojate I, Raygada M, Cho E, Lippman M (1997) A maternal diet high in n-6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA 94: 9372–9377.

    Article  PubMed  Google Scholar 

  10. Swerdlow AJ, De Stavola BL, Swanwick MA, Maconochie NE (1997) Risks of breast and testicular cancers in young adult twins in England and Wales: evidence on prenatal and genetic aetiology. Lancet 350: 1723–1728.

    Article  PubMed  Google Scholar 

  11. Weiss HA, Potischman NA, Brinton LA, et al. (1997) Prenatal and perinatal risk factors for breast cancer in young women. Epidemiology. 8: 181–187.

    PubMed  Google Scholar 

  12. Innes K, Byers T (1999) Preeclampsia and breast cancer risk. Epidemiology 10: 722–732.

    Article  PubMed  Google Scholar 

  13. Potischman N, Troisi R (1999) In utero and early life exposures in relation to risk of breast cancer. Cancer Causes Control. 10: 561–573.

    Article  PubMed  Google Scholar 

  14. Shibata A, Minn AY (2000) Perinatal sex hormones and risk of breast and prostate cancers in adulthood. Epidemiol Rev 22: 239–248.

    PubMed  Google Scholar 

  15. Adami HO, Persson I, Ekbom A, Wolk A, Pontén J. Trichopoulos D (1995) The aetiology and pathogenesis of human breastcancer. Mutation Res 333: 29–35.

    Article  PubMed  Google Scholar 

  16. Adami HO, Signorello LB, Trichopoulos D (1998) Towards an understanding of breast cancer etiology. Semin Cancer Biol 8:255–262.

    Article  PubMed  Google Scholar 

  17. Nordling CO (1953). A new theory on the cancer-inducing mechanism. Br J Cancer 7: 68–72.

    PubMed  Google Scholar 

  18. Herrero-Jimenez P, Thilly G, Southam PJ, et al. (1998) Mutation, cell kinetics, and subpopulations at risk for colon cancer in the United States. Mutation Res 400: 553–578.

    Article  PubMed  Google Scholar 

  19. Moolgavkar SH, Luebeck G (1990). Two-event model for carcinogenesis: biological, mathematical, and statistical considerations. Risk Analy 10: 323–341.

    Google Scholar 

  20. Albanes D, Winick M (1988). Are cell number and cell proliferation risk factors for cancer? J Natl Cancer Inst 80: 772–775.

    PubMed  Google Scholar 

  21. Frankel S, Gunnell DJ, Peters TJ, Maynard M, Davey-Smith G (1998) Childhood energy intake and adult mortality from cancer: the Boyd Orr cohort study. Br Med J 316: 499–504.

    Google Scholar 

  22. Gunnell DJ, Davey-Smith G, Holy JMP, Frankel S (1998) Leg length and risk of cancer in the Boyd Orr cohort. Br Med J 317: 1350–1351.

    Google Scholar 

  23. Albanes D (1998) Height, early energy intake, and cancer. Evidence mounts for the relation of energy intake to adult malignancies. Br Med J 317: 1331–1332.

    Google Scholar 

  24. Ballen KK, Wilson M, Wuu J, et al. (2001) Bigger is better: maternal and neonatal predictors of hematopoietic potential of umbilical cord blood units. Bone Marrow Transplant 27: 7–14.

    Article  PubMed  Google Scholar 

  25. Trichopoulos D, Lipman RD (1992) Mammary gland mass and breast cancer risk. Epidemiology 3: 523–526.

    PubMed  Google Scholar 

  26. Trichopoulos D, Lipworth L (1995) Is cancer causation simpler than we thought, but more intractable? Epidemiology 6: 347–349.

    PubMed  Google Scholar 

  27. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

    Article  PubMed  Google Scholar 

  28. Michalopoulos GK, DeFrances MC (1997) Liver regeneration Science 276: 60–66.

    Article  PubMed  Google Scholar 

  29. Bach SP, Renehan AG, Potten CS (2000) Stem cells: the intestinal stem cell as a paradigm Carcinogenesis 21: 469–476.

    Article  PubMed  Google Scholar 

  30. McKay R (1997) Stem cells in the central nervous system Science 276: 66–71.

    Article  PubMed  Google Scholar 

  31. Alonso L, Fuchs E (2003) Stem cells of the skin epithelium Proc Natl Acad Sci U S A 100(Suppl 1): 11830–11835.

    Article  PubMed  Google Scholar 

  32. Otto WR (2002) Lung epithelial stem cells J Pathol 197: 527–535.

    Article  PubMed  Google Scholar 

  33. Chepko G, Smith GH (1999) Mammary epithelial stem cells: our current understanding. J Mammary Gland Biol Neoplasia 4: 35–52.

    Article  PubMed  Google Scholar 

  34. Quesenberry PJ, Levitt L (1979) Hematopoietic stem cells, Part I. N Engl J Med 301: 755–761.

    PubMed  Google Scholar 

  35. Quesenberry PJ, Levitt L (1979) Hematopoietic stem cells, Part II. N Engl J Med 301: 819–823.

    PubMed  Google Scholar 

  36. Quesenberry PJ, Levitt L (1979) Hematopoietic stem cells, Part III. {tiN Engl J Med} 301: 868–872.

    Google Scholar 

  37. Quesenberry PJ, Colvin GA, Lambert JF (2002) The chiaroscuro stem cell: a unified stem cell theory. Blood 100: 4266–4271.

    Article  PubMed  Google Scholar 

  38. Krause DS, Theise ND, Collector MI, et al. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105: 369–377.

    Article  PubMed  Google Scholar 

  39. Nilsson SK, Dooner MS, Weier HU, et al. (1999) Cells capable of bone production engraft from whole bone marrow transplants in nonablated mice. J Exp Med 189: 729–734.

    Article  PubMed  Google Scholar 

  40. Lagasse E, Connors H, Al-Dhalimy M, et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6: 1229–1234.

    Article  PubMed  Google Scholar 

  41. Peterson BE, Bowen WC, Patrene KD, et al. (1999) Bone marrow as a potential source of hepatic oval cells. Science 284: 1168–1170.

    Article  PubMed  Google Scholar 

  42. Theise ND, Badve S, Saxena R, et al. (2000) Derivation of hepatocytes from bone marrow cells in mice after radiationinduced myeloablation. Hepatology 31: 235–240.

    Article  PubMed  Google Scholar 

  43. Orlic D, Kajstura J, Chimenti S, et al. (2001) Bone marrow cells regenerate infracted myocardium. Nature 410: 701–705.

    Article  PubMed  Google Scholar 

  44. Gussoni E, Soneoka Y, Strickland CD, et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401: 390–394.

    Article  PubMed  Google Scholar 

  45. Fridenstein AIa (1982) Stromal bone marrow cells and the hematopoietic microenvironment. Arkh Patol 44: 3–11.

    Google Scholar 

  46. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone aarrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16: 557–564.

    PubMed  Google Scholar 

  47. Gronthos S, Zannettino A, Graves S, Ohta S, Hay S, Simmonsw P (1999) Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J Bone Miner Res 14: 47–56.

    PubMed  Google Scholar 

  48. Jackson KA, Mi T, Goodell MA (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 96: 14482–14486.

    Article  PubMed  Google Scholar 

  49. Asahara T, Matsuda U, Takahashi T, et al. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228.

    PubMed  Google Scholar 

  50. Peichev M, Naiyer AJ, Pereira D, et al. (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95: 952–958.

    PubMed  Google Scholar 

  51. Abedi M, Greer DA, Colvin GA, et al. (2004) Tissue injury in marrow trans-differentiation. Blood Cells, Mol Dis 32: 42–46.

    Article  Google Scholar 

  52. Hardeman EC, Chiu CP, Minty A, Blau HM (1986) The pattern of actin expression in human fibroblast x mouse muscle heterokaryons suggests that human muscle regulatory factors are produced. Cell 47: 123–130.

    Article  PubMed  Google Scholar 

  53. Terada N, Hamazaki T, Oka M, et al. (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416: 542–545.

    Article  PubMed  Google Scholar 

  54. Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416: 545–548.

    Article  PubMed  Google Scholar 

  55. Masuya M, Drake CJ, Fleming PA, et al. (2003) Hematopoietic origin of glomerular mesangial cells. Blood 101: 2215–2218.

    Article  PubMed  Google Scholar 

  56. Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422: 901–904.

    Article  PubMed  Google Scholar 

  57. Wang X, Willebring H, Akkari Y, et al. (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422: 897–901.

    Article  PubMed  Google Scholar 

  58. Blau HM (2002) A twist of fate. Nature 419: 437.

    Google Scholar 

  59. Blau HM, Blakely BT (1999) Plasticity of cell fate: insights from heterokaryons. Semin Cell Dev Biol 10: 267–272.

    Article  PubMed  Google Scholar 

  60. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry PJ (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196: 245–250.

    Article  PubMed  Google Scholar 

  61. Hertenstein B, Wollert KC, Meyer GP, et al. (2003) Intercoronary infusion of autologous bone marrow cells after myocardial infarction. Results of a prospective randomized-controlled clinical trial. Blood 102: 335a.

    Google Scholar 

  62. Rudland PS, Barraclough R (1988) Stem cells in mammary gland differentiation and cancer. J Cell Sci Suppl 10: 95–114.

    PubMed  Google Scholar 

  63. Rudland PS (1987) Stem cells and the development of mammary cancers in experimental rats and in humans. Cancer Metastasis Rev 6: 55–83.

    PubMed  Google Scholar 

  64. Rudland PS, Ollerhead G, Barraclough R (1989) Isolation of simian virus 40-transformed human mammary epithelial stem cell lines that can differentiate to myoepithelial-like cells in culture and in vivo. Dev Biol 136: 167–180.

    PubMed  Google Scholar 

  65. Rudland PS, Ollerhead GE, Platt-Higgins AM (1991) Morphogenetic behavior of simian virus 40-transformed human mammary epithelial stem cell lines on collagen gels. In Vitro Cell Dev Biol 27: 103–112.

    Google Scholar 

  66. Rudland PS (1993) Epithelial stem cells and their possible role in the development of the normal and diseased human breast. Histol Histopathol 8: 385–404.

    PubMed  Google Scholar 

  67. Russo J, Russo IH (1987) Development of the human mammary gland. In: Neville MC, Daniel CW, eds. The mammary gland. New York: Plenum Press, pp. 67–93.

    Google Scholar 

  68. Howard BA, Gusterson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia 5: 119–137.

    Article  PubMed  Google Scholar 

  69. Russo J, Russo IH (1987) Biological and molecular bases of mammary carcinogenesis. Lab Invest 57: 112–137.

    PubMed  Google Scholar 

  70. Russo J, Calaf G, Sohi N, et al. (1993) Critical steps in breast carcinogenesis. Ann N Y Acad Sci 698: 1–20.

    Google Scholar 

  71. Dao TL (1969) Mammary cancer induction by 7,12-dimethylbenz( a)anthracene: relation to age. Science 165: 810–811.

    PubMed  Google Scholar 

  72. Knight CH, Sorensen A (2001) Windows in early mammary development: critical or not? Reproduction 122: 337–345.

    Article  PubMed  Google Scholar 

  73. Thomas DB (1984) Do hormones cause breast cancer? Cancer 53(3 Suppl): 595–604.

    PubMed  Google Scholar 

  74. Stingl J, Eaves CJ, Kuusk U, Emerman JT (1998) Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63: 201–213.

    PubMed  Google Scholar 

  75. Stingl J, Eaves CJ, Zandieh I, Emerman JT (2001) Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 67: 93–109.

    Article  PubMed  Google Scholar 

  76. Gudjonsson T, Villadsen R, Nielsen HL, Ronnov-Jessen L, Bissell MJ, Petersen OW (2002) Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 16: 693–706.

    Article  PubMed  Google Scholar 

  77. Dainiak N, Sanders M, Sorba S (1991) Induction of circulating neonatal stem cell populations. Blood Cells 17: 339–343.

    PubMed  Google Scholar 

  78. Huang S, Terstappen LW (1994) Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38-hematopoietic stem cells. Blood 83: 1515–1526.

    PubMed  Google Scholar 

  79. Panzenböck B, Bartunek P, Mapara MY, Zenke M (1998) Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood 92: 3658–3668.

    PubMed  Google Scholar 

  80. Russo IH, Russo J (1998) Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia 3: 49–61.

    Article  PubMed  Google Scholar 

  81. Huseby RA, Maloney TM, McGrath CM (1984) Evidence for a direct growth-stimulating effect of estradiol on human MCF-7 cells in vivo. Cancer Res 44: 2654–2659.

    Google Scholar 

  82. Dickson RB, McManaway ME, Lippman ME (1986) Estrogeninduced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 232: 1540–1543.

    PubMed  Google Scholar 

  83. Rudland PS, Fernig DG, Smith JA (1995) Growth factors and their receptors in neoplastic mammary glands. Biomed Pharmacother 49: 389–399.

    Article  PubMed  Google Scholar 

  84. Fendrick JL, Raafat AM, Haslam SZ (1998) Mammary gland growth and development from the postnatal period to postmenopause: ovarian steroid receptor ontogeny and regulation in the mouse. J Mammary Gland Biol Neoplasia 3: 7–22.

    Article  PubMed  Google Scholar 

  85. Laidlaw IJ, Clarke RB, Howell A, Owen AW, Potten CS, Anderson E (1995) The proliferation of normal human breast tissue implanted into athymic nude mice is stimulated by estrogen but not progesterone. Endocrinology 136: 164–171.

    Article  PubMed  Google Scholar 

  86. Holland PA, Knox WF, Potten CS, et al. (1997) Assessment of hormone dependence of comedo ductal carcinoma in situ of the breast. J Natl Cancer Inst 89: 1059–1065.

    Article  PubMed  Google Scholar 

  87. Anderson E, Clarke RB, Howell A (1998) Estrogen responsiveness and control of normal human breast proliferation. J Mammary Gland Biol Neoplasia 3: 23–35.

    Article  PubMed  Google Scholar 

  88. Russo J, Ao X, Grill C, Russo IH (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53: 217–227.

    Article  PubMed  Google Scholar 

  89. Haslam SZ, Counterman LJ, Nummy KA (1993) Effects of epidermal growth factor, estrogen, and progestin on DNA synthesis in mammary cells in vivo are determined by the developmental state of the gland. J Cell Physiol 155: 72–78.

    PubMed  Google Scholar 

  90. Ruan W, Kleinberg DL (1999) Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140: 5075-5081.

    Google Scholar 

  91. Gabelman BM, Emerman JT (1992) Effects of estrogen, epidermal growth factor, and transforming growth factor-alpha on the growth of human breast epithelial cells in primary culture. Exp Cell Res 201: 113–118.

    PubMed  Google Scholar 

  92. Ruan W, Catanese V, Wieczorek R, Feldman M, Kleinberg DL (1995) Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 136: 1296–1302.

    Article  PubMed  Google Scholar 

  93. Westley BR, Clayton SJ, Daws MR, Molloy CA, May FE (1998) Interactions between the oestrogen and insulin-like growth factor signalling pathways in the control of breast epithelial cell proliferation. Biochem Soc Symp 63: 35–44.

    PubMed  Google Scholar 

  94. Clarke RB, Howell A, Anderson E (1997) Type I insulin-like growth factor receptor gene expression in normal human breast tissue treated with oestrogen and progesterone. Br J Cancer 75: 251–257.

    PubMed  Google Scholar 

  95. Vanderboom RJ, Sheffield LG (1993) Estrogen enhances epidermal growth factor-induced DNA synthesis in mammary epithelial cells. J Cell Physiol 156: 367–372.

    PubMed  Google Scholar 

  96. Colditz GA (1998) Relationship between estrogen levels, use of hormone replacement therapy, and breast cancer. J Natl Cancer Inst 90: 814–823.

    Article  PubMed  Google Scholar 

  97. Clemons M, Goss P (2001) Estrogen and the risk of breast cancer. N Engl J Med 344: 276–285.

    Article  PubMed  Google Scholar 

  98. Bernstein L, Ross RK (1993) Endogenous hormones and breast cancer risk. Epidemiol Rev 15: 48–65.

    PubMed  Google Scholar 

  99. Henderson BE, Pike MC, Bernstein L, Ross RK (1996) Breast cancer. In: Schottenfeld D, Fraumeni JJ, eds. Cancer Epidemiology and prevention, 2nd edn. New York: Oxford University Press, pp. 1022–1039.

    Google Scholar 

  100. Kelsey LJ, Horn-Ross PL (1993) Breast cancer: magnitude of the problem and descriptive epidemiology. Epidemiol Rev 15: 7–16.

    PubMed  Google Scholar 

  101. Moolgavkar SH, Day NE, Stevens RG (1980) Two-stage model for carcinogenesis: Epidemiology of breast cancer in females. J Natl Cancer Inst 65: 559–569.

    PubMed  Google Scholar 

  102. Thomas HV, Reeves GK, Key TJ (1997) Endogenous estrogen and postmenopausal breast cancer: a quantitative review. Cancer Causes Control 8: 922–928.

    Article  Google Scholar 

  103. Toniolo PG (1997) Endogenous estrogens and breast cancer risk: the case for prospective cohort studies. Environ Health Perspect 105(Suppl 3): 587–592.

    PubMed  Google Scholar 

  104. Hankinson SE, Willett WC, Manson JE, et al. (1998) Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 90: 1292–1299.

    Article  PubMed  Google Scholar 

  105. Toniolo PG, Levitz M, Zeleniuch-Jacquotte A, et al. (1995) A prospective study of endogenous estrogens and breast cancer in postmenopausal women. J Natl Cancer Inst. 87: 190–197.

    Article  PubMed  Google Scholar 

  106. Bruzzi P, Negri E, La Vecchia C, et al. (1988) Short term increase in risk of breast cancer after full term pregnancy. Br Med J. 297: 1096–1098.

    Google Scholar 

  107. Williams EM, Jones L, Vessey MP, McPherson K (1990) Short term increase in risk of breast cancer associated with full term pregnancy. Br Med J 300: 578–579.

    Google Scholar 

  108. Hsieh CC, Pavia M, Lambe M, et al. (1994) Dual effect of parity on breast cancer risk. Eur J Cancer 30: 969–973.

    Article  Google Scholar 

  109. Lambe M, Hsieh C, Trichopoulos D, Ekbom A, Pavia M, Adami HO (1994) Transient increase in the risk of breast cancer after giving birth. N Engl J Med 331: 5–9.

    Article  PubMed  Google Scholar 

  110. Liu Q, Wuu J, Lambe M, Hsieh SF, Ekbom A, Hsieh CC (2002) Transient increase in breast cancer risk after giving birth: postpartum period with the highest risk (Sweden). Cancer Causes Control 13: 299–305.

    Article  Google Scholar 

  111. Peck JD, Hulka BS, Poole C, Savitz DA, Baird D, Richardson BE (2002) Steroid hormone levels during pregnancy and incidence of maternal breast cancer. Cancer Epidemiol Biomarkers Prev 11: 361–368.

    Google Scholar 

  112. Russo IH, Russo J (1996) Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104: 938–967.

    PubMed  Google Scholar 

  113. Gluckman PD (1986) The role of pituitary hormones, growth factors and insulin in the regulation of fetal growth. In: Clarke JR, ed. Oxford Reviews of Reproductive BiologyOxford: Clarendon Press, Vol. 8, pp. 1–60.

    Google Scholar 

  114. Kneale GW, Stewart AM (1980) Preconception X-rays and childhood cancers. Br J Cancer 41: 222–226.

    PubMed  Google Scholar 

  115. Greenwald P, Barlow JJ, Nasca PC, Burnett WS (1971) Vaginal cancer after maternal treatment with synthetic estrogens. N Engl J Med 285: 390–392.

    PubMed  Google Scholar 

  116. Palmer JR, Hatch EE, Rosenberg CL, et al. (2002) Risk of breast cancer in women exposed to diethylstilbestrol in utero: prelimiinary results (United States). Cancer Causes Control 13: 753–758.

    Article  PubMed  Google Scholar 

  117. Sanderson M, Williams MA, Daling JR, et al. (1998) Maternal factors and breast cancer risk among young women. Paediatr Perinat Epidemiol 12: 397–407.

    Article  PubMed  Google Scholar 

  118. Cnattingius S, Zack MM, Ekbom A, et al. (1995) Prenatal and neonatal risk factors for childhood lymphatic leukemia. J Natl Cancer Inst 87: 908–914.

    PubMed  Google Scholar 

  119. Henderson BE, Bernstein L, Ross RK, Depue RH, Judd HL (1988) The early in utero oestrogen and testosterone environment of blacks and whites: potential effects on male offspring. Br J Cancer 57: 216–218.

    PubMed  Google Scholar 

  120. Akre O, Ekbom A, Hsieh C-c, Trichopoulos D, Adami H-O (1996) Testicular nonseminoma and seminoma in relation to perinatal characteristics. J Natl Cancer Inst 88: 883–889.

    PubMed  Google Scholar 

  121. Ekbom A, Hsieh C-c, Lipworth L, et al. (1996) Perinatal characteristics in relation to incidence of and mortality from prostate cancer. Br Med J 313: 337–341.

    Google Scholar 

  122. Ekbom A, Wuu J, Adami H-O, et al. (2000) Duration of gestation and prostate cancer risk in offspring. Cancer Epidemiol Biomark Prev 9: 221–223.

    Google Scholar 

  123. Le Marchand L, Kolonel LN, Myers BC, Mi M-P (1988) Birth characteristics of premenopausal women with breast cancer. Br J Cancer 57: 437–439.

    PubMed  Google Scholar 

  124. Innes K, Byers T, Schymura M (2000) Birth characteristics and subsequent risk for breast cancer in very young women. Am J Epidemiol 152: 1121–1128.

    Article  PubMed  Google Scholar 

  125. Kaijser M, Lichtenstein P, Granath F, Erlandsson G, Cnattingius S, Ekbom A (2001) In utero exposures and breast cancer: a study of opposite-sexed twins. J Natl Cancer Inst 93: 60–62.

    Article  PubMed  Google Scholar 

  126. Vatten LJ, Maehle BO, Lund Nilsen TI, et al. (2002) Birth weight as a predictor of breast cancer: a case-control study in Norway. Br J Cancer 86: 89–91.

    Article  PubMed  Google Scholar 

  127. Berstein LM (1988) Newborn macrosomy and cancer Adv Cancer Res. 50: 231–278.

    PubMed  Google Scholar 

  128. Walker BE (1990) Tumors in female offspring of control and diethylstilbestrol-exposed mice fed high-fat diets. J Natl Cancer Inst 82: 50–54.

    PubMed  Google Scholar 

  129. Stamilio DM, Sehdev HM, Morgan MA, Propert K, Macones GA (2000) Can antenatal clinical and biochemical markers predict the development of severe preeclampsia? Am J Obstet Gynecol 182: 589–594.

    PubMed  Google Scholar 

  130. Giudice LC, Martina NA, Crystal RA, Tazuke S, Druzin M (1997) Insulin-like growth factor binding protein-1 at the maternal-fetal interface and insulin-like growth factor-I, insulin-like growth factor-II, and insulin-like growth factor binding protein-1 in the circulation of women with severe preeclampsia. Am J Obstet Gynecol 176: 751–757.

    PubMed  Google Scholar 

  131. Halhali A, Tovar AR, Torres N, Bourges H, Garabedian M, Larrea F (2000) Preeclampsia is associated with low circulating levels of insulin-like growth factor I and 1,25-dihydroxyvitamin D in maternal and umbilical cord compartments. J Clin Endocrinol Metab 85: 1828–1833.

    Article  PubMed  Google Scholar 

  132. Vatten LJ, Odegard RA, Nilsen ST, Salvesen KA, Austgulen R (2002) Relationship of insulin-like growth factor-I and insulin-like growth factor binding proteins in umbilical cord plasma to preeclampsia and infant birth weight. Obstet Gynecol. 99: 85–90.

    Article  PubMed  Google Scholar 

  133. Diaz E, Halhali A, Luna C, Diaz L, Avila E, Larrea F (2002) Newborn birth weight correlates with placental zinc, umbilical insulin-like growth factor I, and leptin levels in preeclampsia. Arch Med Res 33: 40–47.

    Article  PubMed  Google Scholar 

  134. Troisi R, Potischman N, Roberts JM, et al. (2003) Maternal serum oestrogen and androgen concentrations in preeclamptic and uncomplicated pregnancies. Int J Epidemiol 32: 455–460.

    Article  PubMed  Google Scholar 

  135. Stavola BL, Hardy R, Kuh D, Silva IS, Wadsworth M, Swerdlow AJ (2000) Birthweight, childhood growth and risk of breast cancer in a British cohort. Br J Cancer 83: 964–968.

    Article  PubMed  Google Scholar 

  136. Titus-Ernstoff L, Egan KM, Newcomb PA, et al. (2002) Early life factors in relation to breast cancer risk in postmenopausal women. Cancer Epidemiol Biomarkers Prev 11: 207–210.

    Google Scholar 

  137. Mellemkjaer L, Olsen ML, Sorensen HT, Thulstrup AM, Olsen J, Olsen JH (2003) Birth weight and risk of early-onset breast cancer (Denmark). Cancer Causes Control 14: 61–64.

    Google Scholar 

  138. Ahlgren M, Sorensen T, Wohlfahrt J, Haflidadottir A, Holst C, Melbye M (2003) Birth weight and risk of breast cancer in a cohort of 106,504 women. Int J Cancer 107: 997–1000.

    Article  Google Scholar 

  139. McCormack VA, dos Santos Silva I, De Stavola BL, Mohsen R, Leon DA, Lithell HO (2003) Fetal growth and subsequent risk of breast cancer: results from long term follow up of Swedish cohort. BrMedJ 326: 248.

    Google Scholar 

  140. Kaijser M, Granath F, Jacobsen G, Cnattingius S, Ekbom A (2000) Maternal Pregnancy estriol levels in relation to anamnestic and fetal anthropometric data. Epidemiology 11: 315–319.

    Article  PubMed  Google Scholar 

  141. Mucci LA, Lagiou P, Tamimi RM, Hsieh CC, Adami HO, Trichopoulos D (2003) Pregnancy estriol, estradiol, progesterone and prolactin in relation to birth weight and other birth size variables (United States). Cancer Causes Control 14: 311–318

    Article  Google Scholar 

  142. Troisi R, Potischman N, Roberts J, et al. (2003) Associations of maternal and umbilical cord hormone concentrations with maternal, gestational and neonatal factors (United States). Cancer Causes Control 14(4): 347–355.

    Article  Google Scholar 

  143. Shibata A, Harris DT, Billings PR (2002) Concentrations of estrogens and IGFs in umbilical cord blood plasma: a comparison among Caucasian, Hispanic, and Asian-American females. J Clin Endocrinol Metab 87: 810–815.

    Article  PubMed  Google Scholar 

  144. Hsieh CC, Lan SJ, Ekbom A, Petridou E, Adami HO, Trichopoulos D (1992) Twin membership and breast cancer risk. Am J Epidemiol 136: 1321–1326

    PubMed  Google Scholar 

  145. Thomas HV, Murphy MF, Key TJ, Fentiman IS, Allen DS, Kinlen LJ (1998) Pregnancy and menstrual hormone levels in mothers of twins compared to mothers of singletons. Ann Hum Biol 25: 69–75.

    PubMed  Google Scholar 

  146. Bernstein L, Pike MC, Lobo RA, Depue RH, Ross RK, Henderson BE (1989) Cigarette smoking in pregnancy results in marked decrease in maternal hCG and oestradiol levels. Br J Obstet Gynacol 96: 92–96.

    Google Scholar 

  147. Petridou E, Katsouyanni K, Hsieh CC, Antsaklis A, Trichopoulos D (1992) Diet, pregnancy estrogens and their possible relevance to cancer risk in the offspring. Oncology 49: 127–132.

    PubMed  Google Scholar 

  148. Mazor M, Hershkovitz R, Chaim W, et al. (1994) Human preterm birth is associated with systemic and local changes in progesterone/17 beta-estradiol ratios. Am J Obstet Gynecol 171: 231–236.

    PubMed  Google Scholar 

  149. Maccoby EE, Doering CH, Jacklin CN, Kraemer H (1979) Concentrations of sex hormones in umbilical-cord blood: their relation to sex and birth order of infants. Child Dev 50: 632–642.

    PubMed  Google Scholar 

  150. Bernstein L, Depue RH, Ross RK, Judd HL, Pike MC, Henderson BE (1986) Higher maternal levels of free estradiol in first compared to second pregnancy: early gestational differences. J Natl Cancer Inst 76: 1035–1039.

    PubMed  Google Scholar 

  151. Ekbom A, Erlandsson G, Hsieh C, Trichopoulos D, Adami HO, Cnattingius S (2000) Risk of breast cancer in prematurely born women. J Natl Cancer Inst 92: 840–841.

    Article  PubMed  Google Scholar 

  152. Hsieh CC, Tzonou A, Trichopoulos D (1991) Birth order and breast cancer risk. Cancer Causes Control 2: 95–98.

    Google Scholar 

  153. Rothman KJ, MacMahon B, Lin TM, et al. (1980) Maternal age and birth rank of women with breast cancer. J Natl Cancer Inst 65: 719–722.

    PubMed  Google Scholar 

  154. Bernstein L, Yuan JM, Ross RK, et al. (1990) Serum hormone levels in pre-menopausal Chinese women in Shanghai and white women in Los Angeles: results from two breast cancer casecontrol studies. Cancer Causes Control 1: 51–58.

    Google Scholar 

  155. Hercz P, Ungar L, Siklos P, Farquharson RG (1988) Unconjugated 17 beta-oestradiol and oestriol in maternal serum and in cord vein and artery blood at term and preterm delivery. Eur J Obstet Gynecol Reprod Biol 27: 7–12.

    PubMed  Google Scholar 

  156. Yen SSC, Jaffe RL, and Barbieri RL (1999) Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management, 4th edn. Saunders Company, pp. 751–784.

  157. Guerrero R, Aso T, Brenner PF, et al. (1976) Studies on the pattern of circulating steroids in the normal menstrual cycle. I. Simultaneous assays of progesterone, pregnenolone, dehydroepiandrosterone, testosterone, dihydrotestosterone, androstenedione, oestradiol and oestrone. Acta Endocrinol 81: 133–149.

    PubMed  Google Scholar 

  158. Carr BR (1990) The endocrinology of pregnancy: the maternalfetal-placental unit. In: KL Becker, ed., Principles and Practice of Endocrinology and Metabolism, Philadelphia: Lippincott, pp. 887–898.

    Google Scholar 

  159. Speroff L, Glass RH, Kase NG (1983) Clinical gynecologic Endocrinology, 3rd edn. Baltimore: Williams and Wilkins, pp. 217–305.

    Google Scholar 

  160. Engel LL, Groman EV (1974) Human placental 17b-estradiol dehydrogenase: characterization and structural studies. Recent Prog Horm Res. 30: 139–169.

    PubMed  Google Scholar 

  161. Klopper A, Jandial V, Wilson G (1975) Plasma steroid assay in the assessment of fetoplacental function. J Steroid Biochem 6: 651–656.

    Article  PubMed  Google Scholar 

  162. McFadyen IR, Worth HG, Wright DJ, Notta SS (1982) High estrogen excretion in pregnancy. Br J Obstet Gynaecol 89: 994–999.

    PubMed  Google Scholar 

  163. Gerhard I, Vollmar B, Runnebaum B, Klinga K, Haller U, Kubli F (1987) Weight percentile at birth. II. Prediction by endocrinological and sonographic measurements. Eur J Obstet Gynecol Reprod Biol 26: 313–328.

    PubMed  Google Scholar 

  164. Petridou E, Panagiotopoulou K, Katsouyanni K, Spanos E, Trichopoulos D (1990) Tobacco smoking, pregnancy estrogens and birth weight. Epidemiology 1: 247–250.

    PubMed  Google Scholar 

  165. Griffin JE and Ojeda SR (1996) Textbook of Endocrine Physiology, 3rd edn Oxford University Press, Inc., pp. 86–100 and 167.

  166. Kaan A, Dimich-Ward H, Manfreda J, et al. (2000) Cord blood IgE: its determinants and prediction of development of asthma and other allergic disorders at 12 months. Ann Allergy, Asthma, Immunol. 84: 37–42.

    Google Scholar 

  167. Panagiotopoulou K, Katsouyanni K, Petridou E, Garas Y, Tzonou A, Trichopoulos D (1990) Maternal age, parity, and pregnancy estrogens. Cancer Causes Control 1: 119–124.

    Google Scholar 

  168. Rosing U, Carlstrom K (1984) Serum levels of unconjugated and total oestrogens and dehydroepiandrosterone, progesterone and urinary oestriol excretion in pre-eclampsia. Gynecol Obstet Invest 18: 199–205.

    PubMed  Google Scholar 

  169. Kaijser M, Jacobsen G, Granath F, Cnattingius S, Ekbom A (2002) Maternal age, anthropometrics and pregnancy oestriol. Paediatr Perinat Epidemiol 16: 149–153.

    Article  PubMed  Google Scholar 

  170. Halmesmaki E, Autti I, Granstrom ML, Stenman UH, Ylikorkala O (1987) Estradiol, estriol, progesterone, prolactin, and human chorionic gonadotropin in pregnant women with alcohol abuse. J Clin Endocrinol Metab 64: 153–156.

    PubMed  Google Scholar 

  171. Petridou E, Katsouyanni K, Spanos E, Skalkidis Y, Panagiotopoulou K, Trichopoulos D (1992) Pregnancy estrogens in relation to coffee and alcohol intake. Ann Epidemiol 2: 241–247.

    PubMed  Google Scholar 

  172. Gerhard I, Fitzer C, Klinga K, Rahman N, Runnebaum B (1986) Estrogen screening in evaluation of fetal outcome and infant's development. J Perinat Med 14: 279–291.

    PubMed  Google Scholar 

  173. Wu CH, Mangan CE, Burtnett MM, Mikhail G (1980) Plasma hormones in DES-exposed females. Obstet Gynecol 55: 157–162.

    PubMed  Google Scholar 

  174. Ferlay J, Parkin DM, Pisani P (1998) GLOBOCAN1: Cancer incidence and mortality worldwide. International Agency for Research on Cancer Software.

  175. Lipworth L, Hsieh C-c, Wide L, et al. (1999) Maternal pregnancy hormone levels in an area with high incidence (Boston, USA) and low incidence (Shanghai, China) of breast cancer. Br J Cancer 79: 7–12.

    Article  PubMed  Google Scholar 

  176. Rothman KJ, Greenland S (1998) Modern epdemiology 2nd edn. Philadelphia: Lippincott, Williams and Wilkins, pp. 470.

    Google Scholar 

  177. Rich-Edward JW, Manson JE, Stampfer MJ, et al. (1995) Height and the risk of cardiovascular disease in women. Am J Epidemiol 142: 909–917.

    PubMed  Google Scholar 

  178. Forsen T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJ (1999) Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. Br Med J 319: 1403–1407.

    Google Scholar 

  179. Stein CE, Fall CH, Kumaran K, Osmond C, Cox V, Barker DJ (1996) Fetal growth and coronary heart disease in south India. Lancet 348: 1269–1273.

    Article  PubMed  Google Scholar 

  180. Wannamethee SG, Shaper AG, Whincup PH, Walker M (1998) Adult height, stroke, and coronary heart disease. Am J Epidemiol 148: 1069–1076.

    PubMed  Google Scholar 

  181. Thom TJ (1989) International mortality from heart disease: rates and trends. Int J Epidemiol 18: S20-S28.

    Google Scholar 

  182. Lagiou P, Hsieh CC, Trichopoulos D, et al. (2003) Birth weight differences between USA and China and their relevance to breast cancer etiology. Int J Epidemiol 32: 193–198.

    Article  PubMed  Google Scholar 

  183. Lawson JS, Field AS, Champion S, Tran D, Ishikura H, Trichopoulos D (1999) Low oestrogen receptor a expression in normal breast tissue underlies low breast cancer incidence in Japan. Lancet 354: 1787–1788.

    Article  PubMed  Google Scholar 

  184. Grimberg A, Cohen P (2000) Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cellular Physiol 183: 1–9.

    Article  Google Scholar 

  185. Peyrat JP, Bonneterre J, Hecquet B, et al. (1993) Plasma insulinlike growth factor-1 (IGF-1) concentrations in human breast cancer. Eur J Cancer 29: 492–497.

    Google Scholar 

  186. Bruning PF, Van Doorn J, Bonfrer M et al. (1995) Insulin-like growth-factor-binding protein 3 is decreased in early-stage operable pre-menopausal breast cancer. Int J Cancer 62: 266–270.

    PubMed  Google Scholar 

  187. Bohlke K, Cramer DW, Trichopoulos D, Mantzoros CS (1998) Insulin-like growth factor-I in relation to premenopausal ductal carcinoma in situ of the breast. Epidemiology 9: 570–573.

    Article  PubMed  Google Scholar 

  188. Hankinson SE, Willett WC, Colditz GA et al. (1998) Circulating concentrations of insulin-like growth factor-1 and risk of breast cancer. Lancet 351: 1393–1396.

    Article  PubMed  Google Scholar 

  189. Kaaks R, Lundin E, Rinaldi S, et al. (2002) Prospective study of IGF-I, IGF-binding proteins, and breast cancer risk, in northern and southern Sweden. Cancer Causes Control 13: 307–316.

    Article  Google Scholar 

  190. Chan JM, Stampfer MJ, Giovannucci E, et al. (1998) Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279: 563–566.

    Article  PubMed  Google Scholar 

  191. Ma J, Pollak MN, Giovannucci E, et al. (1999) Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 91: 620–625.

    Article  PubMed  Google Scholar 

  192. Yu H, Spitz MR, Mistry J, Gu J, Hong WK, Wu X (1999) Plasma levels of insulin-like growth factor-I and lung cancer risk: a case-control analysis. J Natl Cancer Inst 91: 151–156.

    Article  PubMed  Google Scholar 

  193. Strange KS. Wilkinson D. Emerman JT (2002) Mitogenic properties of insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and epidermal growth factor on human breast epithelial cells in primary culture. Breast Cancer Res Treat 75: 203–212.

    Article  PubMed  Google Scholar 

  194. Verhaeghe J, Van Bree R, Van Herck E, Laureys J, Bouillon R, Van Assche FA (1993) C-peptide, insulin-like growth factors I and II, and insulin-like growth factor binding protein-1 in umbilical cord serum: correlations with birth weight. Am J Obstet Gynecol 169: 89–97.

    PubMed  Google Scholar 

  195. Bernstein IM, Goran MI, Copeland KC (1997) Maternal insulin sensitivity and cord blood peptides: relationships to neonatal size at birth. Obstet Gynecol 90: 780–783.

    Article  PubMed  Google Scholar 

  196. Yang SW, Kim SY (2000) The relationship of the levels of leptin, insulin-like growth factor-I and insulin in cord blood with birth size, ponderal index, and gender difference. J Pediatric Endocrinol Metab 13: 289–296.

    Google Scholar 

  197. Coutant R, Boux de Casson F, et al. (2001) Relationships between placental GH concentration and maternal smoking, newborn gender, and maternal leptin: possible implications for birth weight. J Clin Endocrinol Metab 86: 4854–4859.

    Article  PubMed  Google Scholar 

  198. Formby B, Wiley TS (1998) Progesterone inhibits growth and induces apoptosis in breast cancer cells: inverse effects on Bcl-2 and p53. Ann Clin Lab Sci 28: 360–369.

    PubMed  Google Scholar 

  199. Malarkey WB, Kennedy M, Allred LE, Milo G (1983) Physiological concentrations of prolactin can promote the growth of human breast tumor cells in culture. J Clin Endocrinol Metab 56: 673–677.

    PubMed  Google Scholar 

  200. Vonderhaar BK (1989) Estrogens are not required for prolactin induced growth of MCF-7 human breast cancer cells. Cancer Lett 47: 105–110.

    Google Scholar 

  201. Bernstein L, Ross RK, Pike MC, Brown JB, Henderson BE (1990) Hormone levels in older women: a study of post-menopausal breast cancer patients and healthy population controls. Br J Cancer 61: 298–302.

    PubMed  Google Scholar 

  202. Hankinson SE, Willett WC, Michaud DS, et al. (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 91: 629–634.

    Article  PubMed  Google Scholar 

  203. Maynard PV, Stein PE, Symonds EM (1980) Umbilical cord plasma progesterone at term in relation to mode of delivery. Br J Obstet Gynaecol 87: 864–868.

    PubMed  Google Scholar 

  204. Badawi M, Van Exter C, Delogne-Desnoeck J, Van Meenen F, Robyn C (1978) Cord serum prolactin in relation to the time of the day, the sex of the neonate and the birth weight. Acta Endocrinol 87: 241–247.

    PubMed  Google Scholar 

  205. Ho Yuen B, Phillips WD, Cannon W, Sy L, Redford D, Burch P (1982) Prolactin, estradiol, and thyroid hormones in umbilical cord blood of neonates with and without hyaline membrane disease: a study of 405 neonates from midpregnancy to term. Am J Obstet Gynecol 142: 698–703.

    PubMed  Google Scholar 

  206. Parker CR Jr, MacDonald PC, Guzick DS, Porter JC, Rosenfeld CR, Hauth JC (1989) Prolactin levels in umbilical cord blood of human infants: relation to gestational age, maternal complications, and neonatal lung function. Am J Obstet Gynecol 161: 795–802.

    PubMed  Google Scholar 

  207. Cicuttini FM, Boyd AW (1994) Hemopoietic and lymphoid progenitor cells in human umbilical cord blood. Development Immunol 4: 1–11.

    Google Scholar 

  208. Mayani H, Lansdorp PM (1998) Biology of human umbilical cord blood-derived hematopoietic stem progenitor cells. Stem Cells 16: 153–165.

    PubMed  Google Scholar 

  209. Gluckman E, Broxmeyer HE, Auerbach AD, et al. (1989) Hematopoietic reconstitution in a patient with Faconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321: 1174–1178.

    PubMed  Google Scholar 

  210. Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR (1991) Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38-progenitor cells. Blood 77: 1218–1227.

    PubMed  Google Scholar 

  211. Sharkey AM, Jokhi PP, King A, Loke YW, Brown KD, Smith SK (1994) Expression of c-kit and kit ligand at the human maternofetal interface. Cytokine 6: 195–205.

    Article  PubMed  Google Scholar 

  212. Laver JH, Abboud MR, Kawashima I, Leary AG, Ashman LK, Ogawa M (1995) Characterization of c-kit expression by primitive hematopoietic progenitors in umbilical cord blood. Exp Hematol 23: 1515–1519.

    PubMed  Google Scholar 

  213. Rappold I, Ziegler BL, Kohler I, et al. (1997) Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase. Blood 90: 111–125.

    PubMed  Google Scholar 

  214. Xiao M, Dooley DC (2000) Cellular and molecular aspects of human CD34+CD38-) precursors: analysis of a primitive hematopoietic population. Leukemia Lymphoma 38: 489–497.

    PubMed  Google Scholar 

  215. López-Otn C, Diamandis EP (1998) Breast and prostate cancer; an analysis of common epidemiological, genetic, and biochemical features. Endocrine Rev 19: 365–396.

    Article  Google Scholar 

  216. McKiernan JF, Hull D (1981) Prolactin, maternal oestrogens, and breast development in the newborn. Arch Dis Child 56: 770–774.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Cheng Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baik, I., Becker, P.S., DeVito, W.J. et al. Stem Cells and Prenatal Origin of Breast Cancer. Cancer Causes Control 15, 517–530 (2004). https://doi.org/10.1023/B:CACO.0000036450.06092.ce

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CACO.0000036450.06092.ce

Navigation