Skip to main content
Log in

Rho GTPases as Key Transducers of Proliferative Signals in G1 Cell Cycle Regulation

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Mitogenic growth factor- and integrin-dependent signaling pathways cooperate to control the proliferation of nontransformed cells. As integral mediators of these networks, the Rho family of GTPases play a pivotal role in G1 cell cycle progression, primarily through regulation of cyclin D1 expression, as well as the levels of the cyclin-dependent kinase inhibitors p21cip1 and p27kip1. Such dual control of both the critical positive and negative regulators of G1 progression make the Rho GTPases prime candidates to target the autonomous proliferation which typifies cancer cells. Cyclin D1 has been identified as an important oncogene and the cdk inhibitors as tumor suppressors in human breast carcinogenesis. Evidence pointing to the potential role of Rho-dependent pathways and their interaction with oncogenic Ras in contributing to such cell cycle abnormalities that characterize human breast cancer is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512, 1999

    Google Scholar 

  2. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E: New functional activities for the p21 family of CDK inhibitors. Genes Dev 11: 847–862, 1997

    Google Scholar 

  3. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ: The p21Cip1 and p27Kip1 CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18: 1571–1583, 1999

    Google Scholar 

  4. Weinberg R: The retinoblastoma protein and cell cycle control. Cell 81: 323–330, 1995

    Google Scholar 

  5. Degregori J, Kowalik T, Nevins JR: Cellular targets for activation by the E2F1 transcription factor include DNA synthesis-and G1/S-regulatory genes. Mol Cell Biol 15: 4215–4224, 1995

    Google Scholar 

  6. Pardee A: G1 events and regulation of cell proliferation. Science 246: 603–608, 1989

    Google Scholar 

  7. Assoian RK: Anchorage-dependent cell cycle progression. J Cell Biol 136: 1–4, 1997

    Google Scholar 

  8. Assoian RK, Schwartz MA: Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114: 2553–2560, 2001

    Google Scholar 

  9. Lin TH, Chen Q, Howe A, Juliano RL: Cell anchorage permits efficient signal transduction between Ras and its downstream kinases. J Biol Chem 272: 8849–8852, 1997

    Google Scholar 

  10. Renshaw MW, Ren X-D, Schwartz MA: Growth factor activation of MAP kinase requires cell adhesion. EMBO J 16: 5592–5599, 1997

    Google Scholar 

  11. Weber JD, Raben DM, Phillips PJ, Baldessare J: Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J 326: 61–68, 1997

    Google Scholar 

  12. Roovers K, Davey G, Zhu X, Bottazzi ME, Assoian RK: ±5β1 integrin controls cyclin D1 expression by sustaining mitogenactivated protein kinase activity in growth factor-treated cells. Mol Biol Cell 10: 3197–3204, 1999

    Google Scholar 

  13. Aplin AE, Stewart SA, Assoian RK, Juliano RL: Integrinmediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol 153: 273–281, 2001

    Google Scholar 

  14. Zhu X, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK: Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-CDK2, and phosphorylation of the retinoblastoma protein. J Cell Biol 133: 391–403, 1996

    Google Scholar 

  15. Bohmer RM, Scharf E, Assoian RK: Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D1. Mol Biol Cell 7: 101–111, 1996

    Google Scholar 

  16. Schulze A, Zerfass-Thome K, Berges J, Middendorp S, Jansen-Durr P, Henglein B: Anchorage-dependent transcription of the cyclin A gene. Mol Cell Biol 16: 4632–4638, 1996

    Google Scholar 

  17. Resnitzky D: Ectopic expression of cyclin D1 but not cyclin E induces anchorage-independent cell cycle progression. Mol Cell Biol 17: 5640–5647, 1997

    Google Scholar 

  18. Fang F, Orend G, Watanabe N, Hunter T, Ruoslahti E: Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 271: 499–502, 1996

    Google Scholar 

  19. Hansen LK, Mooney DJ, Vacanti JP, Ingber DE: Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell 5: 967–975, 1994

    Google Scholar 

  20. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE: Geometric control of cell life and death. Science 276: 1425–1428, 1997

    Google Scholar 

  21. Huang S, Chen CS, Ingber DE: Control of cyclin D1, p27Kip1, and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol Biol Cell 9: 3179–3193, 1998

    Google Scholar 

  22. Clark EA, King WG, Brugge JS, Symons M, Hynes RO: Integrin-mediated signals regulated by members of the Rho family GTPases. J Cell Biol 142: 573–586, 1998

    Google Scholar 

  23. Renshaw MW, Toksoz D, Schwartz MA: Involvement of the small GTPase Rho in integrin-mediated activation of mitogenactivated protein kinase. J Biol Chem 271: 21691–21694, 1996

    Google Scholar 

  24. Price LS, Leng J, Schwartz MA, Bokoch GM: Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell 9: 1863–1871, 1998

    Google Scholar 

  25. Schwartz MA, Toksoz D, Khosravi-Far R: Transformation by Rho exchange factor oncogenes is mediated by activation of an integrin-dependent pathway. EMBO J 15: 6525–6530, 1996

    Google Scholar 

  26. Ren X-D, Kiosses WB, Schwartz MA: Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18: 578–585, 1999

    Google Scholar 

  27. del Pozo MA, Price LS, Alderson NB, Ren X-D, Schwartz MA: Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J 19: 2008–2014, 2000

    Google Scholar 

  28. Olson MF, Ashworth A, Hall A: An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269: 1270–1272, 1995

    Google Scholar 

  29. Westwick JK, Lambert QT, Clark GJ, Symons M, Van Aelst L, Pestell RG, Der CJ: Rac regulation of transformation, gene expression, and actin organization by multiple PAK-independent pathways. Mol Cell Biol 17: 1324–1335, 1997

    Google Scholar 

  30. Gille H, Downward J: Multiple Ras effector pathways contribute to G1 cell cycle progression. J Biol Chem 274: 22033–22040, 1999

    Google Scholar 

  31. Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK: Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature Cell Biol 3: 950–957, 2001

    Google Scholar 

  32. Gjoerup O, Lukas J, Bartek J, Willumsen BM: Rac and Cdc42 are potent stimulators of E2F-dependent transcription capable of promoting retinoblastoma susceptibility gene product hyperphosphorylation. J Biol Chem 273: 18812–18818, 1998

    Google Scholar 

  33. Page K, Li J, Hodge JA, Liu PT, Vanden Hoek TL, Becker LB, Pestell RG, Rosner MR, Hershenson MB: Characterization of a Rac1 signaling pathway to cyclin D1 expression in airway smooth muscle cells. J Biol Chem 274: 22065–22071, 1999

    Google Scholar 

  34. Joyce D, Bouzahzah B, Fu M, Albanese C, D'Amico M, Steer J, Klein JU, Lee RJ, Segall JE, Westwick JK, Der CJ, Pestell RG: Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-κ-dependent pathway. J Biol Chem 274: 25245–25249, 1999

    Google Scholar 

  35. Mettouchi A, Klein S, Guo W, Lopez-Lago M, Lemichez E, Westwick JK, Giancotti FG: Integrin-specific activation of Rac controls progression through the G1 phase of the cell cycle. Mol Cell 8: 115–127, 2001

    Google Scholar 

  36. Weber JD, Hu W, Jefcoat SC, Raben DM, Baldassare JJ: Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27Kip1. J Biol Chem 272: 32966–32971, 1997

    Google Scholar 

  37. Danen EHJ, Sonnenveld P, Sonnenberg A, Yamada KM: Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factorstimulated cell cycle progression. J Cell Biol 151: 1413–1422, 2000

    Google Scholar 

  38. Hansen LK, Albrecht JH: Regulation of the hepatocyte cell cycle by type I collagen matrix: role of cyclin D1. J Cell Sci 112: 2971–2981, 1999

    Google Scholar 

  39. Hengst L, Reed SI: Translational control of p27Kip1accumulation during the cell cycle. Science 271: 1861–1864, 1996

    Google Scholar 

  40. Hirai A, Nakamura S, Noguchi Y, Yasuda T, Kitagawa M, Tatsuno I, Oeda T, Tahara K, Terano T, Narumiya S, Kohn LD, Saito Y: Geranyleranylated Rho small GTPase(s) are essential for the degradation of p27Kip1and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem 272: 13–16, 1997

    Google Scholar 

  41. Vogt A, Sun J, Qian Y, Hamilton AD, Sebti SM: The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21WAF1/CIP1/SDI1in a p53-independent manner. J Biol Chem 272: 27224–27229, 1997

    Google Scholar 

  42. Auer KL, Park J-S, Seth P, Coffey RJ, Darlington G, Abo A, McMahon M, DePinho RA, Fisher PB, Dent P: Prolonged activation of the mitogen-activated protein kinase pathway promotes DNA synthesis in primary hepatocytes from p21Cip-1/WaF1-null mice, but not in hepatocytes from p16INK4a-null mice. Biochem J 336: 551–560, 1998

    Google Scholar 

  43. Adnane J, Bizouarn FA, Qian Y, Hamilton AD, Sebti SM: p21WAF1/CIP1is upregulated by the geranylgeranyltransferase I inhibitor GGTI-298 through a transforming growth factor β-and Sp1-responsive element: involvement of the small GTPase RhoA. Mol Cell Biol 18: 6962–6970, 1998

    Google Scholar 

  44. Olson MF, Paterson HF, Marshall CJ: Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394: 295–298, 1998

    Google Scholar 

  45. Bottazzi ME, Zhu X, Bohmer RM, Assoian RK: Regulation of p21cip1expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. J Cell Biol 146: 1255–1264, 1999

    Google Scholar 

  46. Millard SS, Vidal A, Markus M, Koff A: A U-rich element in the 5′ untranslated region is necessary for the translation of p27 mRNA. Mol Cell Biol 20: 5947–5959, 2000

    Google Scholar 

  47. Agrawal D, Hauser P, McPherson F, Dong F, Garcia A, Pledger WJ: Repression of p27kip1synthesis by plateletderived growth factor in BALB/c3T3 cells. Mol Cell Biol 16: 4327–4336, 1996

    Google Scholar 

  48. Medema RH, Kops GJPL, Bos JL, Burgering BMT: AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404: 782–787, 2000

    Google Scholar 

  49. Pagano M, Tam SW, Theodoras AM, Beer-Romano P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M: Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269: 682–685, 1995

    Google Scholar 

  50. Laufs U, Marra D, Node K, Liao JK: 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing Rho GTPaseinduced down-regulation of p27Kip1. J Biol Chem 274: 21926–21931, 1999

    Google Scholar 

  51. Hu W, Bellone CJ, Baldassare JJ: RhoA stimulates p27Kipdegradation through its regulation of cyclin E/CDK2 activity. J Biol Chem 274: 3396–3401, 1999

    Google Scholar 

  52. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE: Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 11: 1464–1478, 1997

    Google Scholar 

  53. Vidal A, Millard SS, Miller JP, Koff A: Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. JBC 277: 16433–16440, 2002

    Google Scholar 

  54. Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakidis TR, Roberts JM: A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1in G1 and S phase. Nature 413: 323–327, 2001

    Google Scholar 

  55. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K: Formation of actin stress fibers and focal adhesions enhanced by rho-kinase. Science 275: 1308–1311, 1997

    Google Scholar 

  56. Sahai E, Ishizaki T, Narumiya S, Treisman R: Transformation mediated by RhoA requires activity of ROCK kinases. Current Biol 9: 136–145, 1999

    Google Scholar 

  57. Sawada N, Itoh H, Ueyama K, Yamashita J, Doi K, Chun TH, Inoue M, Masatsugu K, Saito T, Fukunaga Y, Sakaguchi S, Arai H, Ohno N, Komeda M, Nakao K: Inhibition of rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation 101: 2030–2033, 2000

    Google Scholar 

  58. Iwamoto H, Nakamuta M, Tada S, Sugimoto R, Enjoji M, Nawata H: A p160ROCK-specific inhibitor, Y-27632, attenuates rat hepatic stellate cell growth. J Hepatol 32: 762–770, 2000

    Google Scholar 

  59. Sahai E, Olson MF, Marshall CJ: Cross-talk between Ras and Rho signaling pathways in transformation favours proliferation and increase motility. EMBO J 20: 755–766, 2001

    Google Scholar 

  60. Aktories K, Just I: Monoglucosylation of low-molecular mass GTP-binding Rho proteins by clostridial cytotoxins. Trends Cell Biol 5: 441–443, 1995

    Google Scholar 

  61. Lammie GA, Fantl V, Smith R, Shuuring E, Brookes S, Michalides R, Dickson C, Arnold A, Peters G: D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene 6: 439–444, 1991

    Google Scholar 

  62. Schuuring E, Verhoeven E, Mooi WJ, Michalides RJAM: Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. Oncogene 7: 355–361, 1992

    Google Scholar 

  63. Theillet C, Adane J, Szepetowski P, Simon M-P, Jeanteur P, Birnbaum D, Gaudray P: BCL-1 participates in the 11q13 amplification found in breast cancer. Oncogene 5: 147–149, 1990

    Google Scholar 

  64. Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M, Bartek J: Cyclin D1 protein expression and function in human breast cancer. Int J Cancer 57: 353–361, 1994

    Google Scholar 

  65. Buckley MF, Sweeney KJE, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CKW, Musgrove EA, Sutherland RL: Expression and amplification of cyclin genes in human breast cancer. Oncogene 8: 2127–2133, 1993

    Google Scholar 

  66. Gillett C, Smith P, Gregory W, Richards M, Millis R, Peters G, Barnes D: Cyclin D1 and prognosis in human breast cancer. Int J Cancer 69: 92–99, 1996

    Google Scholar 

  67. Weistat-Saslow D, Merino MJ, Manrow RE, Lawrence JA, Bluth RF, Wittenbel KD, Simpson JF, Page DL, Steeg PS: Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nature Med 1: 1257–1260, 1995

    Google Scholar 

  68. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV: Mammary hyperplasia and carcinoma in MMTVcyclin D1 transgenic mice. Nature 369: 669–671, 1994

    Google Scholar 

  69. Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C: Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9: 2364–2372, 1995

    Google Scholar 

  70. Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA: Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82: 621–630, 1995

    Google Scholar 

  71. Yu Q, Geng Y, Sicinski P: Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017–1021, 2001

    Google Scholar 

  72. Fredersdorf S, Burns J, Milne AM, Packham G, Fallis L, Gillett CE, Royds JA, Peston D, Hall PA, Hanby AM, Barnes DM, Shousha S, O'Hare MJ, Lu X: High level expression of p27kip1 and cyclin D1 in some human breast cancer cells: inverse correlation between the expression of p27kip1and degree of malignancy in human breast and colorectal cancers. Proc Natl Acad Sci 94: 6380–6385, 1997

    Google Scholar 

  73. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM: Expression of cell-cycle regulators p27Kip1and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Med 3: 222–225, 1997

    Google Scholar 

  74. Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-Protzner I, Kapusta L, Franssen E, Pritchard KI, Slingerland JM: Decreased levels of the cell-cycle inhibitor p27Kip1protein: prognostic implications in primary breast cancer. Nature Med 3: 227–230, 1997

    Google Scholar 

  75. Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M: Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Med 3: 231–234, 1997

    Google Scholar 

  76. Ferrando AA, Balbin M, Pendas AM, Vizoso F, Velasco G, Lopez-Otin C: Mutational analysis of the human cyclindependent kinase inhibitor p27kip1in primary breast carcinomas. Hum Genet 97: 91–94, 1996

    Google Scholar 

  77. Jiang M, Shao Z-M, Wu J, Lu J-S, Yu L-M, Yuan J-D, Han Q-X, Shen Z-Z, Fontana JA: p21/waf1/cip1 and mdm-2 expression in breast carcinoma patients as related to prognosis. Int J Cancer 74: 529–534, 1997

    Google Scholar 

  78. Shen Z, Wen X-F, Lan F, Shen Z-Z, Shao Z-M: The tumor suppressor gene LKB1 is associated with prognosis in human breast carcinoma. Clin Cancer Res 8: 2085–2090, 2002

    Google Scholar 

  79. Adnane J, Jackson RJ, Nicosia SV, Cantor AB, Pledger WJ, Sebti SM: Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 19: 5338–5347, 2000

    Google Scholar 

  80. Bearss DJ, Lee RJ, Troyer DA, Pestell RG, Windle JJ: Differential effects of p21(WAF1/CIP1) deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Res 62: 2077–2084, 2002

    Google Scholar 

  81. Liberto M, Cobrinik D, Minden A: Rho regulates p21CIP1, cyclin D1, and checkpoint control inmammary epithelial cells. Oncogene 21: 1590–1599, 2002

    Google Scholar 

  82. Mira J-P, Benard V, Groffen J, Sanders LC, Knaus UG: Endogenous hyperactive rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci 97: 185–189, 2000

    Google Scholar 

  83. van Golen KL, Davies S, Wu ZF, Wang YF, Bucana CD, Root H, Chandrasekharappa S, Strawderman M, Ethier SP, Merajver SD: A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and rhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5: 2511–2519, 1999

    Google Scholar 

  84. Fritz G, Just I, Kaina B: Rho GTPases are overexpressed in human tumors. Int J Cancer 81: 682–687, 1999

    Google Scholar 

  85. Schnelzer A, Prechtzel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E: Rac1 in human breast cancer: overexpression, mutational analysis, and characterization of a new isoform, Rac1b. Oncogene 19: 3013–3020, 2000

    Google Scholar 

  86. van Golen KL, Wu Z-F, Qiao XT, Bao LW, Merajver SD: RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60: 5832–5838, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welsh, C.F. Rho GTPases as Key Transducers of Proliferative Signals in G1 Cell Cycle Regulation. Breast Cancer Res Treat 84, 33–42 (2004). https://doi.org/10.1023/B:BREA.0000018425.31633.07

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BREA.0000018425.31633.07

Navigation