Skip to main content
Log in

Turbulent Pressure Statistics in the Atmospheric Boundary Layer from Large-Eddy Simulation

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We use large-eddy simulation (LES) to study the turbulent pressure field in atmospheric boundary layers with free convection, forced convection, and stable stratification. We use the Poisson equation for pressure to represent the pressure field as the sum of mean-shear, turbulence–turbulence, subfilter-scale, Coriolis, and buoyancy contributions. We isolate these contributions and study them separately. We find that in the energy-containing range in the free-convection case the turbulence–turbulence pressure dominates over the entire boundary layer. That part dominates also up to midlayer in the forced-convection case; above that the mean-shear pressure dominates. In the stable case the mean-shear pressure dominates over the entire boundary layer.

We find evidence of an inertial subrange in the pressure spectrum in the free and forced-convection cases; it is dominated by the turbulence–turbulence pressure and has a three-dimensional spectral constant of about 4.0. This agrees well with quasi-Gaussian predictions but is a factor of 2 less than recent results from direct numerical simulations at moderate Reynolds numbers. Measurements of the inertial subrange pressure spectral constant at high Reynolds numbers, which might now be possible, would be most useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrén, A. and Moeng, C.-H.: 1993, ‘Single-Point Closures in a Neutrally Stratified Boundary Layer’, J. Atmos. Sci. 50, 3366–3379.

    Google Scholar 

  • Batchelor, G. K.: 1953, Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, 197 pp.

    Google Scholar 

  • Corrsin, S.: 1963, ‘Turbulence: Experimental Methods’, in S. Flugge (ed.), Handbuch der Physik, Vol. VIII/2, Springer-Verlag, Berlin, pp. 524–590.

    Google Scholar 

  • George, W. K., Beuther, P. D., and Arndt, R. E. A.: 1984, ‘Pressure Spectra in Turbulent Free Shear Flows’, J. Fluid Mech. 148, 155–191.

    Google Scholar 

  • Gotoh, T. and Fukayama, D.: 2001, ‘Pressure Spectrum in Homogeneous Turbulence’, Phys. Rev. Lett. 86, 3775–3778.

    Google Scholar 

  • Hill, R. J. and Wilczak, J. M.: 1995, ‘Pressure Structure Functions and Spectra for Locally Isotropic Turbulence’, J. Fluid Mech. 296, 247–269.

    Google Scholar 

  • Kolmogorov, A. N.: 1941, ‘The Local Structure of Turbulence in an Incompressible Fluid with Very Large Reynolds Number’, CR Acad. Sci. URSS 30, 301–305.

    Google Scholar 

  • Kosović, B.: 1997 ‘Subgrid-Scale Modelling for the Large-Eddy Simulation of High-Reynolds-Number Boundary Layers’, J. Fluid Mech. 336, 151–182.

    Google Scholar 

  • Kosović, B. and Curry, J. A.: 2000, ‘A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’, J. Atmos. Sci. 57, 1052–1068.

    Google Scholar 

  • Kraichnan, R. H.: 1956, ‘Pressure Fluctuations in Turbulent Flow over a Flat Plane’, J. Acoust. Soc. Am. 28, 378–390.

    Google Scholar 

  • Lenschow D. H., Wyngaard, J. C., and Pennell, W. T.: 1980, ‘Mean-Field and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer’, J. Atmos. Sci. 37, 1313–1326.

    Google Scholar 

  • Lumley, J. and Panofsky, H.: 1964, The Structure of Atmospheric Turbulence, Wiley-Interscience, New York, 239 pp.

    Google Scholar 

  • Métais, O. and Lesieur, M.: 1992 ‘Spectral Large-Eddy Simulation of Isotropic and Stably Stratified Turbulence’, J. Fluid Mech. 239, 157–194.

    Google Scholar 

  • Moeng, C.-H.: 1984, ‘A Large-Eddy-Simulation Model for the Study of Planetary Boundary Layer Turbulence’, J. Atmos. Sci. 41, 2052–2062.

    Google Scholar 

  • Moeng, C.-H.: 1986, ‘Large-Eddy-Simulation of a Stratus-Topped Boundary Layer. Part I: Structure and Budgets’, J. Atmos. Sci. 43, 2886–2900.

    Google Scholar 

  • Moeng, C.-H. and Wyngaard, J.C.: 1986, ‘An Analysis of Closures for Pressure-Scalar Covariances in the Convective Boundary Layer’, J. Atmos. Sci. 43, 2499–2513.

    Google Scholar 

  • Nishiyama, R. T. and Bedard, A. J.: 1991, ‘A “Quad-Disc” Static Pressure Probe for Measurement in Adverse Atmospheres: With a Comparative Review of Static Pressure Probe Designs’ Rev. Sci. Instrum. 62, 2193–2204.

    Google Scholar 

  • Obukhov, A. M.: 1949, ‘Pulsations of Pressure in Turbulent Streams’, Doklady ANSSSR 66, 17.

    Google Scholar 

  • Otte, M. J. and Wyngaard, J. C.: 2001, ‘Stably Stratified Interfacial-Layer Turbulence from Large-Eddy Simulation’, J. Atmos. Sci. 58, 3424–3442.

    Google Scholar 

  • Pumir, A.: 1994, ‘A Numerical Study of Pressure Fluctuations in Three-Dimensional, Incompressible, Homogeneous, Isotropic Turbulence’, Phys. Fluids 6, 2071–2083.

    Google Scholar 

  • Wilczak, J. M. and Bedard, Jr. A. J.: 2000, ‘Evaluation of a Turbulence Pressure Instrument Using the Budget of Horizontal Heat Flux’, in preprint, 14th Symposium on Boundary Layer and Turbulence, Aspen, CO, 2000, American Meteorological Society, 45 Beacon St., Boston, MA, pp. 23–26.

    Google Scholar 

  • Wilczak, J. M. Edson, J. B., Højstrup, J., and Hara, T.: 1999, ‘The Budget of Turbulent Kinetic Energy in the Marine Atmospheric Surface Layer’, in G. L. Geernaert (ed.), Air-Sea Exchange: Physics, Chemistry and Dynamics, Kluwer Academic Publishers, Dordrecht, pp. 153–173.

    Google Scholar 

  • Wyngaard, J. C.: 1992, ‘Atmospheric Turbulence’, Annu. Rev. Fluid Mech. 24, 205–233.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Boundary Layer, J. Atmos. Sci. 28, 191–201.

    Google Scholar 

  • Wyngaard, J. C., Cote, O. R., and Izumi, Y.: 1971, ‘Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux’, J. Atmos. Sci. 28, 1171–1182.

    Google Scholar 

  • Wyngaard, J. C., Siegel, A., and Wilczak, J.: 1994, ‘On the Response of a Turbulent-Pressure Probe and the Measurement of Pressure Transport’, Boundary-Layer Meteorol. 69, 379–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha L. Miles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, N.L., Wyngaard, J.C. & Otte, M.J. Turbulent Pressure Statistics in the Atmospheric Boundary Layer from Large-Eddy Simulation. Boundary-Layer Meteorology 113, 161–185 (2004). https://doi.org/10.1023/B:BOUN.0000039377.36809.1d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000039377.36809.1d

Navigation