Skip to main content
Log in

Radiative Heat Transfer and Hydrostatic Stability in Nocturnal Fog

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM2), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-μm droplet diameter and liquid water content of 0.1 × 10−3 kg m−3;, the temperature profile within the fog becomes “S” shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-μm diameter droplet, no strong convective instability layer forms, whereas for a 10-μm diameter droplet a strong convective instability is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bott, A., Sievers, U., and Zdunkowski, W.: 1990, ‘A Radiation Fog Model with a Detailed Treatment of the Interaction between Radiative Transfer and Fog Microphysics’, J. Atmos. Sci. 47, 2153-2166.

    Google Scholar 

  • Brown, R.: 1980, ‘A Numerical Study of Radiation Fog with an Explicit Formulation of the Microphysics’, Quart. J. Roy. Meteorol. Soc. 106, 781-802.

    Google Scholar 

  • Busbridge, I. W. and Orchard, S. E.: 1967, ‘Reflection and Transmission of Light by a Thick Atmosphere According to a Phase Function’, Astrophys. J. 149, 655-664.

    Google Scholar 

  • Clough, S. A., Iacono, M. J., and Moncet, J. L.: 1992, ‘Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor’, J. Geophys. Res. 97(D14), 15761-15785.

    Google Scholar 

  • Duynkerke, P. G.: 1991, ‘Radiation Fog: A Comparison of Model Simulation with Detailed Observations’, Mon. Wea. Rev. 119, 324-341.

    Google Scholar 

  • Duynkerke, P. G.: 1999, ‘Turbulence, Radiation and Fog in Dutch Stable Boundary Layers’, Boundary-Layer Meteorol. 90, 447-477.

    Google Scholar 

  • Fiveland, W. A.: 1991, ‘The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scattering’, ASME HTD 160, 89-96.

    Google Scholar 

  • Guo, Z. and Maruyama, S.: 2001, ‘Prediction of Radiative Heat Transfer in Industrial Equipment Using the Radiation Element Method’, Trans. ASME; J. Pressure Vessel Tech. 123, 530-536.

    Google Scholar 

  • Lee, H. and Buckius, R. O.: 1982, ‘Scaling Anisotropic Scattering in Radiation Heat Transfer for Planar Medium’, Trans. ASME, J. Heat Transfer 104, 68-75.

    Google Scholar 

  • Liou, K. N.: 1992, Radiation and Cloud Processes in the Atmosphere; Theory; Observation; and Modeling, Oxford University Press, New York, 119 pp.

    Google Scholar 

  • Maruyama, S.: 1997, ‘Radiative Heat Transfer in a Layer of Anisotropic Scattering Fog Subjected to Collimated Irradiation’, in Radiative Transfer-2; Proceedings of the Second International Symposium on Radiation Transfer, Beggel House Inc., pp. 157-172.

  • Maruyama, S.: 1998, ‘Radiative Heat Transfer in Anisotropic Scattering Media with Specular Boundary Subjected to Collimated Irradiation’, Int. J. Heat Mass Transfer 41, 2847-2856.

    Google Scholar 

  • Maruyama, S. and Aihara, T.: 1994, ‘Radiation Heat Transfer in Absorbing, Emitting, and Scattering Media with Arbitrary Shapes and Thermal Conditions (Basic Theory and Accuracy in Plane Parallel System)’, Trans. Japan Soc. Mech. Eng. 60, 3138-3144.

    Google Scholar 

  • Maruyama, S. and Aihara, T.: 1997, ‘Radiation Heat Transfer of Arbitrary Three-Dimensional Absorbing, Emitting, and Scattering Media and Specular and Diffuse Surfaces’, Trans. ASME; J. Heat Transfer 119, 129-136.

    Google Scholar 

  • Maruyama, S., Mori, Y., and Sakai, S.: 2004, ‘Nongray Radiative Heat Transfer Analysis in the Anisotropic Scattering Fog Layer Subjected to Solar Irradiation’, J. Quant. Spectros. Rad. Transfer 83, 361-375.

    Google Scholar 

  • Maruyama, S., Morita, K., and Guo, Z.: 2000, ‘Effects of Droplets Parameters on Thermal Protection by water Mist against Intense Irradiation’, Proceedings of NHTC";00, NHTC2000-12265.

  • Maruyama, S., Viskanta, R., and Aihara, T.: 1989, ‘Active Thermal Protection System against Intense Irradiation’, J. Thermophys. Heat Transfer 3, 389-394.

    Google Scholar 

  • McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E., and Garing, J. S.: 1972, Optical Properties of the Atmosphere, 3rd edn., Environ. Res. Pap., 411, Air Force Cambridge Res. Lab., Bedford, MA, 110 pp.

    Google Scholar 

  • Modest, M. F.: 2003, Radiative Heat Transfer, 2nd edn., Academic Press, Amsterdam, pp. 456-458.

    Google Scholar 

  • Oke, T. H.: 1987, Boundary Layer Climates, 2nd edn., Methuen & Co. Ltd., London, 435 pp.

    Google Scholar 

  • Patankar, S. V.: 1980, in M. A. Phillips and E. M. Millman (eds.), Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, USA, 25 pp.

    Google Scholar 

  • Rothman, L. S., Rinsland, C. P., Goldman, A., Massie, S. T., Edwards, D. P., Flaud, J.-M., Perrin, A., Camy-Peyret, C., Dana, V., Mandin, J.-Y., Schroeder, J., McCann, A., Gamache, R. R., Wattson, R. B., Yoshino, K., Chance, K. V., Jucks, K. W., Brown, L. R., Nemtchinov, V., and Varanasi, P.: 1998, ‘The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edn.’, J. Quant. Spectros. Radi. Transfer 60, 665-710.

    Google Scholar 

  • von Glasow, R. and Bott, A.: 1999, ‘Interaction of Radiation Fog with Tall Vegetation’, Atmos. Environ. 33, 1333-1346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikawa, T., Maruyama, S. & Sakai, S. Radiative Heat Transfer and Hydrostatic Stability in Nocturnal Fog. Boundary-Layer Meteorology 113, 273–286 (2004). https://doi.org/10.1023/B:BOUN.0000039376.13527.5e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000039376.13527.5e

Navigation