Skip to main content
Log in

ONE- and TWO-Equation Models for Canopy Turbulence

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Albertson, J. D., Katul, G. G., and Wiberg, P.: 2001, 'Relative Importance of Local and Regional Controls on Coupled Water, Carbon, and Energy Fluxes', Adv. Water Resour. 24, 1103–1118.

    Article  Google Scholar 

  • Amiro, B. D.: 1990, 'Comparison of Turbulence Statistics within 3 Boreal Forest Canopies', Boundary-Layer Meteorol. 51, 99–121.

    Google Scholar 

  • Ayotte, K. W., Finnigan, J. J., and Raupach, M. R.: 1999, 'A Second-Order Closure for Neutrally Stratified Vegetative Canopy Flows', Boundary-Layer Meteorol. 90, 189–216.

    Article  Google Scholar 

  • Baldocchi, D. D.: 1989, 'Turbulent Transfer in a Deciduous Forest', Tree Phys. 5, 357–377.

    Google Scholar 

  • Baldocchi, D. D. and Meyers, T. D.: 1988, 'A Spectral and Lag-Correlation Analysis of Turbulence in a Deciduous Forest Canopy', Boundary-Layer Meteorol. 45, 31–58.

    Google Scholar 

  • Bradshaw, P., Launder, B. E., and Lumley, J. L.: 1991, 'Collaborative Testing of Turbulence Models', J. Fluids Engr.-Trans. ASME 113, 3–4.

    Google Scholar 

  • Brutsaert, W.: 1982, Evaporation into the Atmosphere: Theory, History, and Applications, Kluwer Academic Publishers, Boston, 299 pp.

    Google Scholar 

  • Castro F. A., Palma, J. M., and Lopes, A. S.: 2003, 'Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier-Stokes Equations (K-Epsilon Turbulence Model)', Boundary-Layer Meteorol. 107, 501–530.

    Article  Google Scholar 

  • Finnigan, J. J.: 2000, 'Turbulence in Plant Canopies', Annu. Rev. Fluid Mech. 32, 519–571.

    Article  Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, U.K., 316 pp.

    Google Scholar 

  • Green, S.: 1992, 'Modelling Turbulent Air Flow in a Stand of Widely Spaced Trees', J. Comp. Fluid Dyn. Appl. 5, 294–312.

    Google Scholar 

  • Horn, H. S., Nathan, R., and Kaplan, S. R.: 2001, 'Long-Distance Dispersal of Tree Seeds by Wind', Ecol. Res. 16, 877–885.

    Article  Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York, 289 pp.

    Google Scholar 

  • Katul, G. G. and Albertson, J. D.: 1998, 'An Investigation of Higher-Order Closure Models for a Forested Canopy', Boundary-Layer Meteorol. 89, 47–74.

    Article  Google Scholar 

  • Katul, G. G. and Albertson, J. D.: 1999, 'Modeling CO2 Sources, Sinks, and Fluxes within a Forest Canopy', J. Geophys. Res. (Atmospheres) 104, 6081–6091.

    Article  Google Scholar 

  • Katul, G. G. and Chang, W. H.: 1999, 'Principal Length Scales in Second-Order Closure Models for Canopy Turbulence', J. Appl. Meteorol. 38, 1631–1643.

    Article  Google Scholar 

  • Katul, G. G., Geron, C. D., Hsieh, C. I., Vidakovic, B., and Guenther, A. B.: 1998, 'Active Turbulence and Scalar Transport near the Forest-Atmosphere Interface', J. Appl. Meteorol. 37, 1533–1546.

    Article  Google Scholar 

  • Katul, G. G., Lai, C. T., Schafer, K., Vidakovic, B., Albertson, J. D., Ellsworth, D., and Oren, R.: 2001a, 'Multiscale Analysis of Vegetation Surface Fluxes: from Seconds to Years', Adv. Water Resour. 24, 1119–1132.

    Article  Google Scholar 

  • Katul, G. G., Leuning, R., Kim, J., Denmead, O. T., Miyata, A., and Harazono, Y.: 2001b, 'Estimating CO2 Source/Sink Distributions within a Rice Canopy Using Higher-Order Closure Model', Boundary-Layer Meteorol. 98, 103–125.

    Article  Google Scholar 

  • Kelliher, F. M., Lloyd, J., Arneth, A., Byers, J. N., McSeveny, T., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlargin, A., Ziegler, W., Bauer, G., and Schulze, E. D.: 1998, 'Evaporation from a Central Siberian Pine Forest', J. Hydrol. 205, 279–296.

    Article  Google Scholar 

  • Kelliher, F. M., Lloyd, J., Arneth, A., Luhker, B., Byers, J. N., McSeveny, T. M., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlargin, A., Ziegler, W., Bauer, G., Wong, S. C., and Schulze, E. D.: 1999, 'Carbon Dioxide Efflux Density from the Floor of a Central Siberian Pine Forest', Agric. For. Meteorol. 94, 217–232.

    Article  Google Scholar 

  • Kobayashi, M. H., Pereira, J., and Siqueira, M.: 1994, 'Numerical Study of the Turbulent Flow over and in a Model Forest on a 2D Hill', J. Wind Eng. Ind. Aerodyn. 53, 357–374.

    Article  Google Scholar 

  • Lai, C. T., Katul, G. G., Butnor, J., Siqueira, M., Ellsworth, D., Maier, C., Johnsen, K., McKeand, S., and Oren, R.: 2002, 'Modelling the Limits on the Response of Net Carbon Exchange to Fertilization in a South-Eastern Pine Forest', Plant Cell Environ. 25, 1095–1119.

    Article  Google Scholar 

  • Lai, C. T., Katul, G. G., Ellsworth, D., and Oren, R.: 2000a, 'Modelling Vegetation-Atmosphere CO2 Exchange by a Coupled Eulerian-Langrangian Approach', Boundary-Layer Meteorol. 95, 91–122.

    Article  Google Scholar 

  • Lai, C. T., Katul, G. G., Oren, R., Ellsworth, D., and Schafer, K.: 2000b, 'Modeling CO2 and Water Vapor Turbulent Flux Distributions within a Forest Canopy', J. Geophys. Res. (Atmospheres) 105, 26333–26351.

    Article  Google Scholar 

  • Launder, B. and Spalding, D. B.: 1974, 'The Numerical Computation of Turbulent Flows', Comp. Meth. Appl. Mech. Eng. 3, 269–289.

    Article  Google Scholar 

  • Launder, B. E.: 1996, 'An Introduction to Single-Point Closure Methodology', in J. Lumley (ed.), Simulation and Modeling of Turbulent Flows, Oxford University Press, New York, pp. 243–311.

    Google Scholar 

  • Lee, X. H., Shaw, R. H., and Black, T. A.: 1994, 'Modeling the Effect of Mean Pressure-Gradient on the Mean Flow within Forests', Agric. For. Meteorol. 68, 201–212.

    Article  Google Scholar 

  • Leuning, R., Denmead, O. T., Miyata, A., and Kim, J.: 2000, 'Source/Sink Distributions of Heat, Water Vapour, Carbon Dioxide and Methane in a Rice Canopy Estimated Using Lagrangian Dispersion Analysis', Agric. For. Meteorol. 104, 233–249.

    Article  Google Scholar 

  • Li, Z. J., Miller, D. R., and Lin, J. D.: 1985, 'A First Order Closure Scheme to Describe Counter-Gradient Momentum Transport in Plant Canopies', Boundary-Layer Meteorol. 33, 77–83.

    Google Scholar 

  • Liu, J., Black, T. A., and Novak, M. D.: 1996, 'E-Epsilon Modeling of Turbulent Air Flow Downwind of a Model Forest Edge', Boundary-Layer Meteorol. 77, 21–44.

    Google Scholar 

  • Lumley, J. L.:1992, 'Some Comments on Turbulence', Phys. Fluids A (Fluid Dynamics) 4, 203–211.

    Article  Google Scholar 

  • Mahrt, L., Lee, X. L., Black, A., Neumann, H., and Staebler, R.: 2000, 'Nocturnal Mixing in a Forest Subcanopy', Agric. For. Meteorol. 101, 67–78.

    Article  Google Scholar 

  • Massman, W. J.: 1997, 'An Analytical One-Dimensional Model of Momentum Transfer by Vegetation of Arbitrary Structure', Boundary-Layer Meteorol. 83, 407–421.

    Article  Google Scholar 

  • Massman, W. J. and Weil, J. C.: 1999, 'An Analytical One-Dimensional Second-Order Closure Model of Turbulence Statistics and the Lagrangian Time Scale within and above Plant Canopies of Arbitrary Structure', Boundary-Layer Meteorol. 91, 81–107.

    Article  Google Scholar 

  • Meyers, T. and Paw U, K. T.: 1986, 'Testing of a Higher-Order Closure-Model for Modeling Air-Flow within and above Plant Canopies', Boundary-Layer Meteorol. 37, 297–311.

    Google Scholar 

  • Meyers, T. P.: 1987, 'The Sensitivity of Modeled SO2 Fluxes and Profiles to Stomatal and Boundary-Layer Resistances', Water Air Soil Poll. 35, 261–278.

    Article  Google Scholar 

  • Meyers, T. P. and Baldocchi, D. D.: 1991, 'The Budgets of Turbulent Kinetic-Energy and Reynolds Stress within and above a Deciduous Forest', Agric. For. Meteorol. 53, 207–222.

    Article  Google Scholar 

  • Meyers, T. P. and Paw U, K. T.: 1987, 'Modeling the Plant Canopy Micrometeorology with Higher-Order Closure Principles', Agric. For. Meteorol. 41, 143–163.

    Article  Google Scholar 

  • Nathan, R., Katul, G. G., Horn, H., Thomas, S., Oren, R., Avissar, R., Pacala, S., and Levin, S.: 2002, 'Mechanisms of Long-Distance Dispersal of Seeds by Wind', Nature 418, 409–413.

    Article  Google Scholar 

  • Parlange, M. B. and Brutsaert, W.: 1989, 'Regional Roughness of the Landes Forest and Surface Shear-Stress under Neutral Conditions', Boundary-Layer Meteorol. 48, 69–81.

    Google Scholar 

  • Paw U, K. T. and Meyers, T. P.: 1989, 'Investigations with a Higher-Order Canopy Turbulence Model into Mean Source-Sink Levels and Bulk Canopy Resistances', Agric. For. Meteorol. 47, 259–271.

    Article  Google Scholar 

  • Pinard, J. and Wilson, J. D.: 2001, 'First-and Second-Order Closure Models for Wind in a Plant Canopy', J. Appl. Meteorol. 40, 1762–1768.

    Article  Google Scholar 

  • Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D., and Katul, G. G.: 2004a, 'The Effect of Vegetation Density on Canopy Sublayer Turbulence', Boundary-Layer Meteorol. 111, 565–587.

    Article  Google Scholar 

  • Poggi, D., Katul, G. G., and Albertson, J. D.: 2004b, 'A Note on the Contribution of Dispersive Fluxes to Momentum Transfer within Canopies', Boundary-Layer Meteorol. 111, 615–621.

    Article  Google Scholar 

  • Pope, S. B.: 2000,Turbulent Flows, Cambridge University Press, New York, 771 pp.

    Google Scholar 

  • Raupach, M. R.: 1989a, 'Applying Lagrangian Fluid Mechanics to Infer Scalar Source Distributions from Concentration Profiles in Plant Canopies', Agric. For. Meteorol. 47, 85–108.

    Google Scholar 

  • Raupach, M. R.: 1989b, 'A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies', Quart. J. Roy. Meteorol. Soc. 115, 609–632.

    Article  Google Scholar 

  • Raupach, M. R.: 1991, 'Vegetation-Atmosphere Interaction in Homogeneous and Heterogeneous Terrain-Some Implications of Mixed-Layer Dynamics', Vegetatio 91, 105–120.

    Google Scholar 

  • Raupach, M. R.: 1994, 'Simplified Expressions for Vegetation Roughness Length and Zero-Plane Displacement as Functions of Canopy Height and Area Index', Boundary-Layer Meteorol. 71, 211–216.

    Google Scholar 

  • Raupach, M. R. and Finnigan, J. J.: 1997, 'The Influence of Topography on Meteorological Variables and Surface-Atmosphere Interactions', J. Hydrol. 190, 182–213.

    Article  Google Scholar 

  • Raupach, M. R. and Shaw, R. H.: 1982, 'Averaging Procedures for Flow within Vegetation Canopies', Boundary-Layer Meteorol. 22, 79–90.

    Google Scholar 

  • Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy', Boundary-Layer Meteorol. 78, 351–382.

    Google Scholar 

  • Raupach, M. R., Weng, S., Carruthers, D., and Hunt, J. C. R.: 1992, 'Temperature and Humidity Fields and Fluxes over Low Hills', Quart. Roy. Meteorol. Soc. 118, 191–225.

    Article  Google Scholar 

  • Sanz, C.: 2003, 'A Note on K-Epsilon Modelling of Vegetation Canopy Air-Flow', Boundary-Layer Meteorol. 108, 191–197.

    Article  Google Scholar 

  • Schulze, E. D., Lloyd, J., Kelliher, J., Wirth, C., Rebmann, C., Luhker, B., Mund, M., Knohl, A., Milyukova, I. M., Schulze, W., Ziegler, W., Varlagin, A. B., Sogachev, A. F., Valentini, R., Dore, S., Grigoriev, S., Kolle, O., Panfyorov, M. I., Tchebakova, N., and Vygodskaya, N. N.: 1999, 'Productivity of Forests in the Eurosiberian Boreal Region and their Potential to Act as a Carbon Sink-A Synthesis', Global Change Biol. 5, 703–722.

    Article  Google Scholar 

  • Siqueira, M. and Katul, G. G.: 2002, 'Estimating Heat Sources and Fluxes in Thermally Stratified Canopy Flows Using Higher-Order Closure Models', Boundary-Layer Meteorol. 103, 125–142.

    Article  Google Scholar 

  • Speziale, C. G.: 1996, 'Modeling of Turbulent Transport Equations', in J. Lumley (ed.), Simulation and Modeling of Turbulent Flows, Oxford University Press, New York, pp. 185–242

    Google Scholar 

  • Stull, R.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Boston, 666 pp.

    Google Scholar 

  • Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, Massachusetts Institute of Technology, Boston, 300 pp.

    Google Scholar 

  • Warsi, Z. U. A.: 1992, Fluid Dynamics: Theoretical and Computational Approaches, CRC Press, London, 683 pp.

    Google Scholar 

  • Wilson, J. D.: 1988, 'A 2nd-Order Closure Model for Flow through Vegetation', Boundary-Layer Meteorol. 42, 371–392.

    Google Scholar 

  • Wilson, J. D., Finnigan, J. J., and Raupach, M. R.: 1998, 'A First-Order Closure for Disturbed Plant-Canopy Flows, and its Application to Winds in a Canopy on a Ridge'. Quart.J. Roy. Meteorol. Soc. 124, 705–732.

    Article  Google Scholar 

  • Wilson, J. D., Ward, D. P., Thurtell, G. W., and Kidd, G. E.: 1982, 'Statistics of Atmospheric Turbulence within and above a Corn Canopy', Boundary-Layer Meteorol. 24, 495–519.

    Google Scholar 

  • Wilson, N. R. and Shaw, R. H.: 1977, 'A Higher Order Closure Model for Canopy Flows', J. Appl. Meteorol. 16, 1197–1205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel G. Katul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katul, G.G., Mahrt, L., Poggi, D. et al. ONE- and TWO-Equation Models for Canopy Turbulence. Boundary-Layer Meteorology 113, 81–109 (2004). https://doi.org/10.1023/B:BOUN.0000037333.48760.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000037333.48760.e5

Navigation