Skip to main content
Log in

Resolution Sensitivity and Scaling of Large-Eddy Simulations of the Stable Boundary Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Large-eddy simulations (LES) of the continuously turbulent quasi-equilibrium stable boundary layer (SBL) are conducted with grid lengths in the range of 12.5 m to 2 m, in order to explore resolution sensitivity, and determine at what point grid convergence occurs. The structure of the mean potential temperature, winds, and turbulent fluxes varies significantly over this resolution range. The highest resolution simulations show a significant degree of convergence. The dimensionless momentum diffusivity asymptotes to a value of 0.06, corresponding to a limiting flux Richardson number of 0.15.

Using the converged simulations, some scaling hypotheses underpinning first-order and second-order closure models are revisited. The effective Richardson number stability functions of the LES are compared with the forms often used in numerical weather prediction (NWP). The mixing implied by the LES is less than that used in NWP. The commonly used similarity profiles for heat and momentum fluxes, and the scalings for dissipation and pressure covariances are compared with the LES. This information could provide guidance for the next generation of SBL parametrization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andre, J. C. and Mahrt, L.: 1982, ‘The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling’, J. Atmos. Sci. 39, 864–878.

    Article  Google Scholar 

  • Andren, A.: 1995, ‘The Structure of Stably Stratified Atmospheric Boundary Layers: A Large-Eddy Simulation Study’, Quart. J. Roy. Meteorol. Soc. 121, 961–985.

    Article  Google Scholar 

  • Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427–1440.

    Article  Google Scholar 

  • Brown, A. R., Derbyshire, S. H., and Mason, P. J.: 1994, ‘Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model’, Quart. J. Roy. Meteorol. Soc. 120, 1485–1512.

    Article  Google Scholar 

  • Derbyshire, S. H.: 1990, ‘Nieuwstadt's Stable Boundary Layer Revisited’, Quart. J. Roy. Meteorol. Soc. 116, 127–158.

    Article  Google Scholar 

  • Holtslag, A. A. M.: 2003, ‘GABLS Initiates Intercomparison for Stable Boundary Layer Case’, GEWEX News 13, 7–8.

    Google Scholar 

  • Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in Stable Layers’, Quart. J. Roy. Meteorol. Soc. 111, 793–815.

    Article  Google Scholar 

  • King, J. C., Connolley, W. M., and Derbyshire, S. H.: 2001, ‘Sensitivity of Modelled Antarctic Climate to Surface and Boundary-Layer Flux Parametrizations’, Quart. J. Roy. Meteorol. Soc. 127, 779–794.

    Article  Google Scholar 

  • Kosovic, B.: 1997, ‘Subgrid-Scale Modelling for the Large-Eddy Simulation of High-Reynolds-Number Boundary Layers’, J. Fluid Mech. 336, 151–182.

    Article  Google Scholar 

  • Kosovic, B. and Curry, J. A.: 2000, ‘A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’, J. Atmos. Sci. 57, 1052–1068.

    Article  Google Scholar 

  • Leonard, B. P., MacVean, M. K., and Lock, A. P.: 1993, Positivity-Preserving Numerical Schemes for Multidimensional Advection, NASA Technical Memorandum 106055 (ICOMP-93905), 62 pp.

  • Lilly, D. K.: 1967, ‘The Representation of Small-Scale Turbulence in Numerical Simulation Experiments’, in Proceedings, IBM Scientific Computing Symposium on Environmental Sciences, pp. 195–210.

  • Louis, J. F.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 17, 187–202.

    Article  Google Scholar 

  • Mason, P. J. and Derbyshire, S. H.: 1990, ‘Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 53, 117–162.

    Article  Google Scholar 

  • Moeng, C.-H.: 1984, ‘A Large-Eddy Simulation Model for the Study of Planetary Boundary Layer Turbulence’, J. Atmos. Sci. 41, 2042–2062.

    Google Scholar 

  • Moeng, C.-H. and Wyngaard, J. C.: 1986, ‘An Analysis of Closures for Pressure-Scalar Covariances in the Convective Boundary Layer’, J. Atmos. Sci. 43, 2499–2513.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2202–2216.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M.: 1985, ‘A Model for the Stationary, Stable Boundary Layer’, in J. C. R. Hunt (ed.), Turbulence and Diffusion in Stable Environments, Oxford University Press, pp. 149–179.

  • Saiki, E. M., Moeng. C.-H., and Sullivan, P. P.: 2000, ‘Large-Eddy Simulation of the Stably Stratified Planetary Boundary Layer’, Boundary-Layer Meteorol. 95, 1–30.

    Article  Google Scholar 

  • Smagorinsky, J.: 1963, ‘General Circulation Experiments with the Primitive Equations. Part 1: The Basic Experiment’, Mon. Wea. Rev. 91, 99–164.

    Google Scholar 

  • Sullivan, P. P., McWilliams, J. C., and Moeng, C.-H.: 1994, ‘A Subgrid-Sale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows’, Boundary-Layer Meteorol. 71, 247–276.

    Article  Google Scholar 

  • Thorpe, A. J. and Guymer, T. H.: 1977, ‘The Nocturnal Jet’, Quart. J. Roy. Meteorol. Soc. 103, 633–653.

    Article  Google Scholar 

  • Wyngaard, J. C.: 1975, ‘Modeling the Planetary Boundary Layer-Extension to the Stable Case’, Boundary-Layer Meteorol. 9, 441–460.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beare, R.J., Macvean, M.K. Resolution Sensitivity and Scaling of Large-Eddy Simulations of the Stable Boundary Layer. Boundary-Layer Meteorology 112, 257–281 (2004). https://doi.org/10.1023/B:BOUN.0000027910.57913.4d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000027910.57913.4d

Navigation