Skip to main content
Log in

Characteristics of Intermittent Turbulent Temperature Fluxes in Stable Conditions

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The behaviour of intermittent turbulent temperature fluxes is characterized in terms of a flux interval, defined as the time interval over which flux values are computed, and a flux threshold value. Fluxes whose magnitudes exceed the threshold value are defined as flux events while the times when the threshold is not exceeded are defined as gaps. Turbulent temperature flux data from five sites in Kansas, Utah, and Washington State, U.S.A. are examined within this descriptive framework. The turbulent event fraction fturb, the ratio of the time occupied by turbulent events to the total sampling time, is found to depend linearly on the average flux for the sampling period over a range of flux intervals, threshold values, and sampling times. As the average flux for a sampling period decreases toward zero, the median magnitude of the fluxes during the gaps also decreases but the median fluxes during the turbulent events become nearly independent of the sampling period average. A wide range of values of fturb is found for gradient Richardson numbers less than 0.3, indicating the possibility of considerable intermittency under weakly to moderately stable conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnard, J. C.: 2000, Intermittent Turbulence in the Very Stable Boundary Layer, Ph.D. Thesis, Department of Mechanical Engineering, University of Washington, 155 pp.

  • Blackadar, A. K.: 1979, in J. R. Pfafflin and E. N. Ziegler (eds.), Advances in Environmental Science and Engineering, Gordon and Breech, pp. 50–85.

  • Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: 1992, ‘Direct Simulation of the Stably Stratified Ekman Layer, J. Fluid Mech. 244, 677–712.

    Google Scholar 

  • Coulter, R. L. and Doran, J. C.: 2002, ‘Spatial and Temporal Occurrences of Intermittent Turbulence during CASES-99’, Boundary-Layer Meteorol. 105, 329–349.

    Article  Google Scholar 

  • Derbyshire, S. H.: 1999, ‘Boundary-Layer Decoupling over Cold Surfaces as a Physical Boundary Instability’, Boundary-Layer Meteorol. 90, 297–325.

    Article  Google Scholar 

  • Doran, J. C., Fast, J. D., and Horel, J.: 1992, ‘The VTMX 2000 Campaign’, Bull. Amer. Meteorol. Soc. 83, 537–551.

    Article  Google Scholar 

  • Howell, J. F. and Sun, J.: 1999, ‘Surface-Layer Fluxes in Stable Conditions’, Boundary-Layer Meteorol. 90, 495–520.

    Article  Google Scholar 

  • Kondo, J., Kanechika, O., and Yasuda, N.: 1978, ‘Heat and Momentum Transfers under Strong Stability in the Atmospheric Surface Layer’, J. Atmos. Sci. 35, 1012–1021.

    Article  Google Scholar 

  • Mahrt, L.: 1999, ‘Stratified Atmospheric Boundary Layers’, Boundary-Layer Meteorol. 90, 375–396.

    Article  Google Scholar 

  • Mahrt, L., Sun, J., Blumen, W., Delaney, T., and Oncley, S.: 1998, ‘Nocturnal Boundary-Layer Regimes’, Boundary-Layer Meteorol. 88, 255–278.

    Article  Google Scholar 

  • McNider, R. T., England, D. E., Friedman, M. J., and Shi, X.: 1995, ‘Predictability of the Stable Atmospheric Boundary Layer’, J. Atmos. Sci. 52, 1602–1614.

    Article  Google Scholar 

  • Nappo, C. J.: 1991, ‘Sporadic Breakdowns of Stability in the PBL over Simple and Complex Terrain’, Boundary-Layer Meteorol. 54, 69–87.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M.: 1984., ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2202–2216.

    Article  Google Scholar 

  • Pahlow, M., Parlange, M. B., and Porte-Angel, F.: 2001, ‘On Monin-Obukhov Similarity in the Stable Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 99, 225–248.

    Article  Google Scholar 

  • Poulos, G. S., et al.: 2002, ‘CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer’, Bull. Amer. Meteorol. Soc. 83, 555–581.

    Article  Google Scholar 

  • ReVelle, D. O.: 1993, ‘Chaos and “Bursting” in the Planetary Boundary Layer’, J. Appl. Meteorol. 32, 1169–1180.

    Article  Google Scholar 

  • Soler, M. R., Infante, C., Buenestado, P., and Mahrt, K.: 2002, ‘Observations of Nocturnal Drainage Flow in a Shallow Gully’, Boundary-Layer Meteorol. 105, 253–273.

    Article  Google Scholar 

  • Sun, J., et al.: 2002, ‘Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer’, Boundary-Layer Meteorol. 105, 199–219.

    Article  Google Scholar 

  • Van de Wiel, B. J. H., Ronda, R. J., Moene, A. F., DeBruin, A. R., and Holtslag, A. A. M.: 2002a, ‘Intermittent Turbulence and Oscillations in the Stable Boundary Layer over Land, Part I: A Bulk Model’, J. Atmos. Sci. 59, 942–958.

    Article  Google Scholar 

  • Van de Wiel, B. J. H., Moene, A. F., Ronda, R. J., DeBruin, A. R., and Holtslag, A. A. M.: 2002b, ‘Intermittent Turbulence and Oscillations in the Stable Boundary Layer over Land, Part II: A System Dynamics Approach’, J. Atmos. Sci. 59, 2567–2581.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doran, J.C. Characteristics of Intermittent Turbulent Temperature Fluxes in Stable Conditions. Boundary-Layer Meteorology 112, 241–255 (2004). https://doi.org/10.1023/B:BOUN.0000027907.06649.d0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000027907.06649.d0

Navigation