Skip to main content
Log in

Turbulence Structure of the Unstable Atmospheric Surface Layer and Transition to the Outer Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, which then creates a second ejection that is similar to, but larger than, the first. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures. Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. In an extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to the fundamental hypothesis of Monin--Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and are severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer. When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surface layer, z s, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer. It is z s = u 3* /kεs, where u * is friction velocity, k is the von Kármán constant and εs is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer. This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower observations confirm a strong qualitative change in the structure of the turbulence at about that height. The tallest eddies within the surface layer have height z s, so z s is a new basis parameter for similarity models of the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acarlar, A. C. and Smith, C. R.: 1987, ‘A Study of Hairpin Vortices in a Laminar Boundary Layer. Part 1. Hairpin Vortices Generated by a Hemisphere Protuberance’, J. Fluid Mech. 175, 1–41.

    Google Scholar 

  • Adrian, R. J., Balachandar, S., and Liu, Z.: 2001, ‘Spanwise Growth of Vortex Structure in Wall Turbulence’, Korean Soc. Mech. Eng. Int. J. 15, 1741–1749.

    Google Scholar 

  • Adrian, R. J., Meinhart, C. D., and Tomkins, C. D.: 2000, ‘Vortex Organization in the Outer Region of the Turbulent Boundary Layer’, J. Fluid Mech. 422, 1–54.

    Article  MathSciNet  Google Scholar 

  • Antonia, R. A., Chambers, A. J., Friehe, C. A., and Van Atta, C. W.: 1979, ‘Temperature Ramps in the Atmospheric Surface Layer’, J. Atmos. Sci. 36, 99–108.

    Article  Google Scholar 

  • Bradshaw, P.: 1978, ‘Comments on “Horizontal Velocity Spectra in an Unstable Surface Layer”’, J. Atmos. Sci. 35, 1768–1769.

    Article  Google Scholar 

  • Breuer, K. S. and Landahl, M. T.: 1990, ‘The Evolution of a Local Disturbance in a Laminar Boundary Layer. Part 2. Strong Disturbances’, J. Fluid Mech. 220, 595–621.

    Google Scholar 

  • Brost, R. A., Wyngaard, J. C., and Lenschow, D. H.: 1982, ‘Marine Stratocumulus Layers. Part II: Turbulence Budgets’, J. Atmos. Sci. 39, 818–836.

    Article  Google Scholar 

  • Busch, N. E. and Panofsky, H. A.: 1968, ‘Recent Spectra of Atmospheric Turbulence’, Quart. J. Roy. Meteorol. Soc. 94, 132–148.

    Google Scholar 

  • Case, K. M.: 1960, ‘Stability of Inviscid Plane Couette Flow’, Phys. Fluids 3, 143–148.

    Article  Google Scholar 

  • Derksen, W. J.: 1974, ‘Thermal Infrared Pictures and the Mapping of Microclimate’, Neth. J. Agric. Sci. 22, 119–132.

    Google Scholar 

  • Edson, J. B. and Fairall, C. W.: 1998, ‘Similarity Relationships in the Marine Atmospheric Surface Layer for Terms in the TKE and Scalar Variance budgets’, J. Atmos. Sci. 55, 2311–2328.

    Article  Google Scholar 

  • Etling, D. and Brown, R. A.: 1993, ‘Roll Vortices in the Planetary Boundary Layer: A Review’, Boundary-Layer Meteorol. 65, 215–248.

    Article  Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, U.K., 316 pp.

    Google Scholar 

  • Head, M. R. and Bandyopadhyay, P.: 1981, ‘New Aspects of Turbulent Boundary Layer Structure’, J. Fluid Mech. 107, 297–338.

    Google Scholar 

  • HÖgstrÖm, U., Hunt, J. C. R., and Smedman, A.: 2002, ‘Theory and Measurements for Turbulence Spectra and Variances in the Atmospheric Neutral Surface Layer’, Boundary-Layer Meteorol. 103, 101–124.

    Article  Google Scholar 

  • HØjstrup, J.: 1981, ‘A Simple Model for the Adjustment of Velocity Spectra in Unstable Conditions Downstream of an Abrupt Change in Roughness and Heat Flux’, Boundary-Layer Meteorol. 21, 341–356.

    Article  Google Scholar 

  • HØjstrup, J.: 1982, ‘Velocity Spectra in the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 39, 2239–2248.

    Article  Google Scholar 

  • Holtslag, A. A. M. and Nieuwstadt, F. T. M.: 1986, ‘Scaling the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 36, 201–209.

    Article  Google Scholar 

  • Hommema, S. and Adrian, R. J.: 2001, ‘Structure ofWall-Eddies at Rq = 106’, in R. J. Adrian, D. F. G. DurÃo, and M. V. Heitor et al. (eds.), Laser Techniques for Fluid Mechanics. Selected Papers from the 10th International Symposium, Lisbon, Portugal, 10–13 July 2000, Paper IV.9.

  • Hommema, S. E. and Adrian, R. J.: 2003, ‘Packet Structure of Surface Eddies in the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 106, 147–170.

    Article  Google Scholar 

  • Hunt, J. C. R. and Carlotti, P.: 2001, ‘Statistical Structure at the Wall of the High Reynolds Number Turbulent Boundary Layer’, Flow Turb. Combust. 66, 453–475.

    Article  Google Scholar 

  • Hunt, J. C. R. and Morrison, J. F.: 2000, ‘Eddy Structure in Turbulent Boundary Layers’, Eur. J. Mech. B Fluids 19, 673–694.

    Google Scholar 

  • JimÉnez, J.: 1999, ‘The Physics of Wall Turbulence’, Physica A 263, 252–262.

    Article  Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1990, ‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’, J. Fluid Mech. 212, 637–662.

    MathSciNet  Google Scholar 

  • Kaimal, J. C.: 1978, ‘Horizontal Velocity Spectra in an Unstable Surface Layer’, J. Atmos. Sci. 35, 18–24.

    Article  Google Scholar 

  • Kaimal, J. C. and Businger, J. A.: 1970, ‘Case Studies of a Convective Plume and a Dust Devil’, J. Appl. Meteorol. 9, 612–620.

    Article  Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., CotÉ, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Article  Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and CotÉ, O. R.: 1972, ‘Spectral Characteristics of Surface-Layer Turbulence’, Quart. J. Roy. Meteorol. Soc. 98, 563–589.

    Article  Google Scholar 

  • Laubach, J., McNaughton, K. G., and Wilson, J. D.: 2000, ‘Heat and Water Vapour Diffusivities near the Base of a Disturbed Stable Internal Boundary Layer’, Boundary-Layer Meteorol. 94, 23–63.

    Article  Google Scholar 

  • Levinski, V. and Cohen, J.: 1995, ‘The Evolution of a Localized Vortex Disturbance in External Shear Flows. Part 1. Theoretical Considerations and Preliminary Experimental Results’, J. Fluid Mech. 289, 159–177.

    Google Scholar 

  • Lin, C.-L., McWilliams, J. C., Moeng, C.-H., and Sullivan, P. P.: 1996, ‘Coherent Structures and Dynamics in a Neutrally Stratified Planetary Boundary Layer Flow’, Phys. Fluids 8, 2626–2639.

    Article  Google Scholar 

  • Mahrt, L.: 1997, ‘Surface Fluxes and Boundary Layer Structure’, in A. A. M. Holtslag and P. G. Duynkerke (eds.), Clear and Cloudy Boundary Layers, Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp. 113–128.

    Google Scholar 

  • Mason, R. A., Shirer, H. N., Wells, R., and Young, G. S.: 2002, ‘Vertical Transport by Plumes within the Moderately Convective Marine Atmospheric Surface Layer’, J. Atmos. Sci. 59, 1337–1355.

    Article  Google Scholar 

  • McNaughton, K. G.: 2004, ‘Attached Eddies and Production Spectra in the Atmospheric Logarithmic Layer’, Boundary-Layer Meteorol. 111, 1–18.

    Article  Google Scholar 

  • McNaughton, K. G. and Blundell, R. E.: 2002, ‘A Model for the Large-Scale Ramp Structures Observed in the Atmospheric Surface Layer’, in Preprints: 15th Conference on Boundary Layers and Turbulence, Wageningen, Netherlands, 2002, American Meteorological Society, Boston, MA, Paper 9.10.

    Google Scholar 

  • McNaughton, K. G. and Brunet, Y.: 2002, ‘Townsend's Hypothesis, Coherent Structures and Monin-Obukhov Similarity’, Boundary-Layer Meteorol. 102, 161–175.

    Article  Google Scholar 

  • McNaughton, K. G. and Laubach, J.: 2000, ‘Power Spectra and Cospectra for Wind and Scalars in a Disturbed Surface Layer at the Base of an Advective Inversion’, Boundary-Layer Meteorol. 96, 143–185.

    Article  Google Scholar 

  • Metzger, M. M., Klewicki, J. C., Bradshaw, K. L., and Sadr, R.: 2001, ‘Scaling the Near-Wall Axial Turbulent Stress in the Zero Pressure Gradient Boundary Layer’, Phys. Fluids 13, 1819–1821.

    Article  Google Scholar 

  • Moin, P. and Mahesh, K.: 1998, ‘Direct Numerical Simulation: A Tool in Turbulence Research’, Annu. Rev. Fluid Mech. 30, 539–578.

    Article  Google Scholar 

  • Nicholls, S. and Readings, C. J.: 1981, ‘Spectral Characteristics of Surface Layer Turbulence over the Sea’, Quart. J. Roy. Meteorol. Soc. 107, 591–614.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M. and Brost, R. A.: 1986, ‘The Decay of Convective Turbulence’, J. Atmos. Sci. 43, 532–546.

    Article  Google Scholar 

  • Obukhov, A. M.: 1946, ‘Turbulence in an Atmosphere with a Non-Uniform Temperature’, Tr. Inst. Teor. Geofiz. Acad. Nauk SSSR 1, 95–115 (in Russian). English translation, 1971, Boundary-Layer Meteorol. 2, 7-29.

    Google Scholar 

  • Priestley, C. H. B.: 1955, ‘Free and Forced Convection in the Atmosphere near the Ground’, Quart. J. Roy. Meteorol. Soc. 81, 139–143.

    Google Scholar 

  • Robinson, S. K.: 1991, ‘Coherent Motions in the Turbulent Boundary Layer’, Annu. Rev. Fluid Mech. 23, 601–639.

    Article  Google Scholar 

  • Sorbjan, Z.: 1989, Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs, NJ, 317 pp.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Taylor, R. J.: 1958, ‘Thermal Structures in the Lowest Layers of the Atmosphere’, Aust. J. Phys. 11, 168–173.

    Google Scholar 

  • Tennekes, H.: 1970, ‘Free Convection in the Turbulent Ekman Layer of the Atmosphere’, J. Atmos. Sci. 27, 1027–1034.

    Article  Google Scholar 

  • Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above a Convective Boundary Layer’, J. Atmos. Sci. 53, 149–160.

    Google Scholar 

  • Townsend, A. A.: 1961, ‘Equilibrium Layers and Wall Turbulence’, J. Fluid Mech. 11, 97–120.

    Google Scholar 

  • von KÁrmÁn, T.: 1930, ‘Mechanische Ähnlichkeit und Turbulenz’, Nachr. Ges. Wiss. GÖttingen, 58–76.

  • Webb, E. K.: 1977, ‘Convection Mechanisms of Atmospheric Heat Transfer from Surface to Global Scales’, in R. W. Bilger (ed.), Proceedings of the Second Australasian Conference on Heat and Mass Transfer, University of Sydney, pp. 523–539.

  • Webb, E. K.: 1988, ‘Convective Processes in the Lower Atmosphere: Commentary’, in W. L. Steffan and O. T. Denmead (eds.), Flow and Transport in the Natural Environment: Advances and Applications, Springer-Verlag, Berlin, pp. 261–269.

    Google Scholar 

  • Wilczak, J. M. and Businger, J. A.: 1986, ‘Reply’, J. Atmos. Sci. 43, 501–502.

    Article  Google Scholar 

  • Williams, A. G.: 1991, Internal Structure and Interactions of Coherent Eddies in the Lower Convective Boundary Layer, Ph.D. Thesis, Flinders University of South Australia, 207 pp.

  • Williams, A. G. and Hacker, J. M.: 1992, ‘The Coherent Shape and Structure of Coherent Eddies in the Convective Boundary Layer’, Boundary-Layer Meteorol. 61, 213–246.

    Article  Google Scholar 

  • Williams, A. G. and Hacker, J. M.: 1993, ‘Interactions between Coherent Eddies in the Lower Convective Boundary Layer’, Boundary-Layer Meteorol. 64, 55–74.

    Article  Google Scholar 

  • Wyngaard, J. C.: 1992, ‘Atmospheric Turbulence’, Annu. Rev. Fluid Mech. 24, 205–233.

    Article  Google Scholar 

  • Wyngaard, J. C. and CotÉ, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 190–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.G. McNaughton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNaughton, K. Turbulence Structure of the Unstable Atmospheric Surface Layer and Transition to the Outer Layer. Boundary-Layer Meteorology 112, 199–221 (2004). https://doi.org/10.1023/B:BOUN.0000027906.28627.49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000027906.28627.49

Navigation