Skip to main content
Log in

Aircraft Observations of the Development of Thermal Internal Boundary Layers and Scaling of the Convective Boundary Layer Over Non-Homogeneous Land Surfaces

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This study investigates the convective boundary layer (CBL) that develops over anon-homogeneous surface under different thermal and dynamic conditions. Analysesare based on data obtained from a Russian research aircraft equipped with turbulentsensors during the GAME-Siberia experiment over Yakutsk in Siberia, from April to June 2000.

Mesoscale thermal internal boundary layers (MTIBLs) that radically modified CBLdevelopment were observed under unstable atmospheric conditions. It was found thatMTIBLs strongly influenced the vertical and horizontal structures of virtual potentialtemperature, specific humidity and, most notably, the vertical sensible and latent heatfluxes. MTIBLs in the vicinity of the Lena River lowlands were confirmed by clouddistributions in satellite pictures.

MTIBLs spread through the entire CBL and radically modify its structure if the CBL isunstable, and strong thermal features on the underlying surface have horizontal scalesexceeding 10 km. MTIBL detection is facilitated through the use of special parameterslinking shear stress and convective motion.

The turbulent structure of the CBL with and without MTIBLs was scaled usingthe mosaic or flux aggregate approach. A non-dimensional parameterLRau/Lhetero (where LRau is Raupach's length and Lhetero is the horizontal scale of the surface heterogeneity)estimates the application limit of similarity and local similarity scaling models forthe mosaic parts over the surface. Normalized vertical profiles of wind speed, airtemperature, turbulent sensible and latent heat fluxes for the mosaic parts withLRauLhetero < 1 could be estimated by typical scalingcurves for the homogeneous CBL. Traditional similarity scaling models for the CBLcould not be applied for the mosaic parts with LRau/Lhetero > 1.

For some horizontally non-homogeneous CBLs, horizontal sensible heat fluxes werecomparable with the vertical fluxes. The largest horizontal sensible heat fluxes occurred at the top of the surface layer and below the top of the CBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson, J. D. and Parlange, M. B.: 1999, 'Natural Integration of Scalar Fluxes from Complex Terrain', Adv. Water Resour. 23, 239-252.

    Google Scholar 

  • Brutsaert, W. H.: 1982, Evaporation into the Atmosphere, D. Reidel, Dordrecht, 299 pp.

    Google Scholar 

  • Caughey, S. J.: 1982, 'Observed Characteristics of the Atmospheric Boundary Layer', in F. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modeling, D. Reidel, Dordrecht, pp. 107-158.

    Google Scholar 

  • Deardorff, J. W.: 1970a, 'Preliminary Results from Numerical Integrations of the Unstable Planetary Boundary Layer', J. Atmos. Sci. 27, 1209-1211.

    Google Scholar 

  • Deardorff, J. W.: 1970b, 'Convective Velocity and Temperature Scale for the Unstable Planetary Boundary Layer and for Rayleigh Convection', J. Atmos. Sci. 27, 1212-1213.

    Google Scholar 

  • Fedorovich, E. and Mironov, D.: 1995, 'A Model for a Shear-Free Convective Boundary Layer with Parameterized Capping Inversion Structure', J. Atmos. Sci. 1, 83-95.

    Google Scholar 

  • Frech, M. and Jochum, A.: 1999, 'The Evaluation of Flux Aggregation Methods Using Aircraft Measurements in the Surface Layer', Agric. For. Meteorol. 98-99, 121-143.

    Google Scholar 

  • Garratt, J. R.: 1990, 'The Internal Boundary Layer-A Review', Boundary-Layer Meteorol. 50, 171-203.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, U.K., 316 pp.

    Google Scholar 

  • Grossmann, A. and Morlet, J.: 1984, 'Decomposition of Hardy Functions into Square Integrate Wavelets of Constant Shape', SIAM J. Math. Anal. 15, 723-736.

    Google Scholar 

  • Hamada, S., Ohta, T., Hiyama, T., Kuwada, T., Takahashi, A., and Maximov, T. C.: 2003, 'Hydrometeorological Behaviors of Pine and Larch Forests in Eastern Siberia', Hydrol. Process., in press.

  • Hiyama, T., Strunin, M. A., Asanuma, J., Mezrin, M. Y., Suzuki, R., and Ohata, T.: 2001, 'Flux Distributions of Heat and Carbon Dioxide in the Atmospheric Boundary Layer over Non-Homogeneous Surface in Eastern Siberia', in Proceedings of the Fifth International Study Conference on GEWEX in Asia and GAME, 3-5 October, 2001, Nagoya, Japan, pp. 307-314.

  • Hiyama, T., Strunin, M. A., Suzuki, R., Asanuma, J., Mezrin, M. Y., Bezrukova, N. A., and Ohata, T.: 2003, 'Aircraft Observations of the Atmospheric Boundary Layer over a Heterogeneous Surface in Eastern Siberia', Hydrol. Process. 17, 2885-2911.

    Google Scholar 

  • Ishii, Y., Yabuki, H., Nomura, M., Tanaka, H., Kobayashi, N., and Desyatkin, R. V.: 2001, 'Water and Energy Flux Observation over an Alas Lake in Central Yakutia, Eastern Siberia', in Proceedings of the Fifth International Study Conference on GEWEX in Asia and GAME, 3-5 October, 2001, Nagoya, Japan, pp. 670-673.

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows, their Structure and Measurements, Oxford University Press, New York, Oxford, 289 pp.

    Google Scholar 

  • Lenschow, D. H.: 1972, The Measurements of Air Velocity and Temperature Using the NCAR Buffalo Aircraft Measuring System, Technical Note TN/STR-74, NCAR, Boulder, CO, 39 pp.

  • Lenschow, D. H. and Stankov, B. B.: 1986, 'Length Scale in the Convective Boundary Layer', J. Atmos. Sci. 43, 1198-1209.

    Google Scholar 

  • Lenschow, D. H., Mann, J., and Kristensen, L.: 1994, 'How Long Is Long Enough When Measuring Fluxes and Other Turbulence Statistics', J. Atmos. Oceanic Tech. 11, 661-673.

    Google Scholar 

  • Lenschow, D. H., Wingaard, J. C., and Pennell, W. T.: 1980, 'Mean Fields and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer', J. Atmos. Sci. 37, 1313-1326.

    Google Scholar 

  • Lumley, J. L. and Panofsky, H.: 1964, The Structure of Atmospheric Turbulence, Interscience Publishers, New York, 239 pp.

    Google Scholar 

  • Mahrt, L.: 1996, 'The Bulk Aerodynamic Formulation over Heterogeneous Surface', Boundary-Layer Meteorol. 78, 87-119.

    Google Scholar 

  • Mahrt, L.: 2000, 'Surface Heterogeneity and Vertical Structure of the Boundary Layer', Boundary-Layer Meteorol. 96, 33-62.

    Google Scholar 

  • Mezrin, M. Y.: 1997, 'Humidity Measurements from Aircraft', Atmos. Res. 44, 53-59.

    Google Scholar 

  • Ohata, T. and Fukushima, Y.: 2001, 'Progress of GAME-Siberia in 2000', GAME Publication 26, Activity Report of GAME-Siberia 2000, Japan National Committee for GAME, GAME-Siberia Sub-Committee, March 2001, 3-8.

  • Ohta, T., Hiyama, T., Tanaka, H., Kuwada, T., Maximov, T. C., Ohata, T., and Fukushima, Y.: 2001, 'Seasonal Variation in the Energy and Water Exchanges above and below a Larch Forest in Eastern Siberia', Hydrol. Process. 15, 1459-1476.

    Google Scholar 

  • Raupach, M. R.: 1991, 'Vegetation-Atmosphere Interaction in Homogeneous and Heterogeneous Terrain: Some Implications of Mixed-Layer Dynamics', Vegetatio 91, 105-120.

    Google Scholar 

  • Raupach, M. R. and Finnigan, J. J.: 1995, 'Scale Issues in Boundary-Layer Meteorology: Surface Energy Balances in Heterogeneous Terrain', Hydrol. Process. 9, 589-612.

    Google Scholar 

  • Schmidt, H. and Schumann, U.: 1989, 'Coherent Structures of the Convective Boundary Layer', J. Fluid. Mech. 200, 511-562.

    Google Scholar 

  • Shao, Y. and Hacker, J. M.: 1990, 'Local Similarity Relationships in a Horizontally Inhomogeneous Boundary Layer', Boundary-Layer Meteorol. 52, 17-40.

    Google Scholar 

  • Shuttleworth, W. J.: 1988, 'Macrohydrology-The New Challenge for Process Hydrology', J. Hydrol. 100, 31-56.

    Google Scholar 

  • Sorbjan, Z.: 1986, 'On Similarity in the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 34, 377-397.

    Google Scholar 

  • Sorbjan, Z.: 1991, 'Evaluation of Local Similarity Functions in the Convective Boundary Layer', Boundary-Layer Meteorol. 30, 1565-1583.

    Google Scholar 

  • Strunin, M. A.: 1997, 'Meteorological Potential for Contamination of Arctic Troposphere: Aircraft Measuring System for Atmospheric Turbulence and Methods for Calculations its Characteristics. Archive and Database of Atmospheric Turbulence', Atmos. Res. 44, 17-35.

    Google Scholar 

  • Strunin, M. A. and Foken, Th.: 1997, 'Techniques for Quality Assessments of Aircraft Turbulent Flux Measurements', Deutscher Wetterdienst Forschung und Entwicklung, Arbeitsergebnisse, 44, Offenbach am Main, 17 pp.

  • Strunin, M. A. and Foken, Th.: 1998, 'Influence of Non-Homogeneity of Underlying Surface on the Structure of Turbulence in the Atmospheric Boundary Layer', in Abstracts of the Presentations for the 23rd General Assembly EGS, Nice, April, 1998, Annales Geophysicae, Supplement to Volume 16, 1998, Part 2: Hydrology, Oceans & Atmosphere, C427-C808.

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Sun, J., Lenschow, D. H., Mahrt, L., Crawford, T. L., Davis, K. J., Oncley, S. P., MacPherson, J. I., Wang, Q., Dobosy, R. J., and Desjardins, R. L.: 1997, 'Lake-Induced Atmospheric Circulations During BOREAS', J. Geophys. Res. 102(D24), 29,155-29,166.

    Google Scholar 

  • Vinnichenko, V. K., Pinus, N. Z., Shmeter, S. M., and Shur, G. N.: 1980, Turbulence in the Free Atmosphere, Consultants Bureau, New York, 310 pp.

    Google Scholar 

  • Wood, N. and Mason, P. J.: 1991, 'The Influence of Stability on the Effective Roughness Lengths for Momentum and Heat Flux', Quart. J. Roy. Meteorol. Soc. 117, 1025-1056.

    Google Scholar 

  • Wyngaard, J. C.: 1973, 'On Surface Layer Turbulence', in D. A. Haugen (ed.), Workshop on Micrometeorology, Boston, MA: American Meteorological Society, pp. 101-149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly affiliated to the Frontier Observational Research System for Global Change

Formerly affiliated to the Frontier Observational Research System for Global Change

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strunin, M.A., Hiyama, T., Asanuma, J. et al. Aircraft Observations of the Development of Thermal Internal Boundary Layers and Scaling of the Convective Boundary Layer Over Non-Homogeneous Land Surfaces. Boundary-Layer Meteorology 111, 491–522 (2004). https://doi.org/10.1023/B:BOUN.0000016542.72958.e9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000016542.72958.e9

Navigation