Skip to main content
Log in

Momentum Transfer and Turbulent Kinetic Energy Budgets within a Dense Model Canopy

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Second-order closure models for the canopy sublayer (CSL) employ aset of closure schemes developed for `free-air' flow equations andthen add extra terms to account for canopy related processes. Muchof the current research thrust in CSL closure has focused on thesecanopy modifications. Instead of offering new closure formulationshere, we propose a new mixing length model that accounts for basicenergetic modes within the CSL. Detailed flume experiments withcylindrical rods in dense arrays to represent a rigid canopy areconducted to test the closure model. We show that when this lengthscale model is combined with standard second-order closureschemes, first and second moments, triple velocity correlations,the mean turbulent kinetic energy dissipation rate, and the wakeproduction are all well reproduced within the CSL provided thedrag coefficient (CD) is well parameterized. The maintheoretical novelty here is the analytical linkage betweengradient-diffusion closure schemes for the triple velocitycorrelation and non-local momentum transfer via cumulant expansionmethods. We showed that second-order closure models reproducereasonably well the relative importance of ejections and sweeps onmomentum transfer despite their local closure approximations.Hence, it is demonstrated that for simple canopy morphology (e.g.,cylindrical rods) with well-defined length scales, standard closureschemes can reproduce key flow statistics without much revision.When all these results are taken together, it appears that thepredictive skills of second-order closure models are not limitedby closure formulations; rather, they are limited by our abilityto independently connect the drag coefficient and the effectivemixing length to the canopy roughness density. With rapidadvancements in laser altimetry, the canopy roughness densitydistribution will become available for many terrestrialecosystems. Quantifying the sheltering effect, the homogeneity andisotropy of the drag coefficient, and more importantly, thecanonical mixing length, for such variable roughness density isstill lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson, J. D., Katul, G. G., and Wiberg, P.: 2001, 'Relative Importance of Local and Regional Controls on Coupled Water, Carbon, and Energy Fluxes', Adv. Water Res. 24, 1103-1118.

    Google Scholar 

  • Antonia, R. A.: 1981, 'Reynolds-Number Dependence of High-Order Moments of the Streamwise Turbulent Velocity Derivative', Boundary-Layer Meteorol. 21, 159-171.

    Google Scholar 

  • Ayotte, K. W., Finnigan J. J., and Raupach R. M.: 1999, 'A Second-Order Closure for Neutrally Stratified Vegetative Canopy Flow', Boundary-Layer Meteorol. 90, 189-216.

    Google Scholar 

  • Baldocchi, D. D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, Ch., Davis, K., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, J. W., Oechel, W., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: 'FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor and Energy Flux Densities', Bull. Amer. Meteorol. Soc. 82, 2415-2435.

  • Batchelor, G. K.: 1967, An Introduction to Fluid Dynamics, Cambridge University Press, U.K., 615 pp.

    Google Scholar 

  • Brunet, Y., Finnigan, J. J., and Raupach, M. R.: 1994, 'A Wind Tunnel Study of Air Flow in Waving Wheat: Single-Point Velocity Statistics', Boundary-Layer Meteorol. 70, 95-132.

    Google Scholar 

  • Finnigan, J.: 2000, 'Turbulence in Plant Canopies', Annu. Rev. Fluid Mech. 32, 519-571.

    Google Scholar 

  • Finnigan, J.: 2000, 'Turbulent Transport in Flexible Plant Canopies', in B. A. Hutchinson and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publishing Co., Dordrecht, pp. 443-480.

    Google Scholar 

  • Hanjalić, H. H.: 2002, 'One-Point Closure Models for Buoyancy-Driven Turbulent Flow', Annu. Rev. Fluid Mech. 34, 321-347.

    Google Scholar 

  • Jackson, P. S.: 1981, 'On the Displacement Height in the Logarithmic Velocity Profile', J. Fluid Mech. 111, 15-25.

    Google Scholar 

  • Katul, G. G. and Albertson, J. D.: 1998, 'An Investigation of Higher Order Closure Models for a Forested Canopy', Boundary-Layer Meteorol. 89, 47-74.

    Google Scholar 

  • Katul, G. G., and Chang, W. H.: 1999, 'Principal Length Scales in Second-Order Closure Models for Canopy Turbulence', J. Appl. Meteorol. 38, 1631-1643.

    Google Scholar 

  • Katul, G. G., Hsieh, C. I., Kuhn, G., Ellsworth, D., and Nie, D.: 1997, 'The Turbulent Eddy Motion at the Forest-Atmosphere Interface', J. Geophys. Res. 102, 13409-13421.

    Google Scholar 

  • Katul, G. G., Lai, C. T., Schafer, K., Vidakovic, B., Albertson, J. D., Ellsworth, D., and Oren, R.: 2001, 'Multiscale Analysis of Vegetation Surface Fluxes: From Seconds to Years', Adv. Water Res. 24, 1119-1132.

    Google Scholar 

  • Launder, B. E.: 1996, 'An Introduction to Single-Point Closure Methodology', in T. G. Gatski, M. Y. Hussaini, and J. L. Lumley (eds.), Simulation and Modeling of Turbulent Flows, Oxford University Press, Oxford, New York, pp. 243-310.

    Google Scholar 

  • Lumley, J. L.: 1978, 'Computational Modelling of Turbulent Flows', Adv. Appl. Mech. 18, 123-142.

    Google Scholar 

  • Massman, W. J.: 1997, 'An Analytical One-Dimensional Model of Momentum Transfer by Vegetation of Arbitrary Structure', Boundary-Layer Meteorol. 83, 407-421.

    Google Scholar 

  • Massman, W. J. and Weil, J. C.: 1999, 'An Analytical One-Dimensional Second-Order Closure Model of Turbulence Statistics and the Lagrangian Timescale within and above Plant Canopies of Arbitrary Structure', Boundary-Layer Meteorol. 91, 81-107.

    Google Scholar 

  • Mellor, G.: 1973, 'Analytic Prediction of the Properties of Stratified Planetary Boundary Layer', J. Atmos. Sci. 30, 1061-1069.

    Google Scholar 

  • Meyers, T. and Paw U, K. T.: 1986, 'Testing of a Higher-Order Closure Model for Modeling Airflow within and above Plant Canopies', Boundary-Layer Meteorol. 37, 297-311.

    Google Scholar 

  • Nakagawa, H. and Nezu, I.: 1977, 'Prediction of the Contributions to the Reynolds Stress from Bursting Events in Open Channel Flows', J. Fluid Mech. 80, 99-128.

    Google Scholar 

  • Nathan, R., Katul, G. G., Horn, H. S., Thomas, S. M., Oren, R., Avissar, R., Pacala, S. W., and Levin, S. A.: 1977, 'Mechanisms of Long-Distance Dispersal of Seeds by Wind', Nature 418, 409-413.

    Google Scholar 

  • Pinard, J. P. and Wilson, J. D.: 2001, 'First-and Second-Order Closure Models for Wind in a Plant Canopy', J. Appl. Meteorol. 40, 1762-1768.

    Google Scholar 

  • Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D., and Katul, G. G.: 2004a, 'The Effect of Vegetation Density on Canopy Sub-Layer Turbulence', Boundary-Layer Meteorol. 111, 565-587.

    Google Scholar 

  • Poggi, D., Katul, G. G., and Albertson, J. D.: 2004b, 'A Note on the Contribution of Dispersive Fluxes to Momentum Transfer within Canopies', Boundary-Layer Meteorol. 111, 615-621.

    Google Scholar 

  • Pope, S. B.: 2000, Turbulent Flows, Cambridge University Press, U.K., 771 pp.

    Google Scholar 

  • Raupach, M. R.: 1981, 'Conditional Statistics of Reynolds Stress in Rough-Wall and Smooth-Wall Turbulent Boundary Layers', J. Fluid Mech. 108, 363-382.

    Google Scholar 

  • Raupach, M. R.: 1988, 'Canopy Transport Processes', in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment, Springer-Verlag, New York, pp. 95-127.

    Google Scholar 

  • Raupach, M. R.: 1994, 'Simplified Expressions for Vegetation Roughness Length and Zero-Plane Displacement as Functions of Canopy Height and Area Index', Boundary-Layer Meteorol. 71, 211-216.

    Google Scholar 

  • Raupach, M. R. and Shaw, R. H.: 1982, 'Averaging Procedures for Flow within Vegetation Canopies', Boundary-Layer Meteorol. 61, 47-64.

    Google Scholar 

  • Raupach, M. R. and Thom, A. S.: 1981, 'Turbulence in and above Plant Canopies', Annu. Rev. Fluid Mech. 13, 97-129.

    Google Scholar 

  • Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing Layer Analogy', Boundary-Layer Meteorol. 78, 351-382.

    Google Scholar 

  • Shaw, R. H.: 1977, 'Secondary Wind Speed Maxima Inside Plant Canopies', J. Appl. Meteorol. 16, 514-521.

    Google Scholar 

  • Shaw, R. H. and Schumann, U.: 1992, 'Large-Eddy Simulations of Turbulent Flow above and within a Forest', Boundary-Layer Meteorol. 61, 47-64.

    Google Scholar 

  • Shaw, R. H., Tavangar, J., and Ward, D.: 1983, 'Structure of the Reynolds Stress in a Canopy Layer', J. Clim. Appl. Meteorol. 22, 1922-1931.

    Google Scholar 

  • Seginer, I., Mulhearn, P. J., Bradley E. F., and Finnigan, J. J.: 1976, 'Turbulent Flow in a Model Plant Canopy', Boundary-Layer Meteorol. 10, 423-453.

    Google Scholar 

  • Thom, A. S.: 1971, 'Momentum Absorption by Vegetation', Quart. J. Roy. Meteorol. Soc. 97, 414-428.

    Google Scholar 

  • Wilson, J. D.: 1988, 'A Second Order Closure Model for Flow through Vegetation', Boundary-Layer Meteorol. 42, 371-392.

    Google Scholar 

  • Wilson, N. R. and Shaw, R. H.: 1977, 'A Higher Order Closure Model for Canopy Flow', J. Appl. Meteorol. 16, 1198-1205.

    Google Scholar 

  • Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S. M., Bakwin, P. S., Daube, B. C., Bassow, S. L., and Bazzaz, F. A.: 1993, 'Net Exchange of CO2 in a Mid-Latitude Forest', Science 260, 1314-1317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poggi, D., Katul, G.G. & Albertson, J.D. Momentum Transfer and Turbulent Kinetic Energy Budgets within a Dense Model Canopy. Boundary-Layer Meteorology 111, 589–614 (2004). https://doi.org/10.1023/B:BOUN.0000016502.52590.af

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000016502.52590.af

Navigation