Skip to main content
Log in

Coherent Structures in the Atmospheric Surface Layer under Stable and Unstable Conditions

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Simultaneous measurements of the instantaneous values of absolute temperatureat seven heights within the lower 36 m of the atmospheric boundary layer underdifferent stability conditions were carried out, accompanied by measurements ofthe wind velocity components at two levels and of solar radiation flux at the surface.The data obtained allow one to investigate individual convective cells known ascoherent structures (CS). Outside the CS, i.e., during quiet periods, an instanttemperature profile is in close agreement with the dry-adiabatic lapse rate, butwithin CS the temperature changes much faster with height, and the shape ofthe profile varies significantly.A method was developed to transform temperature records from sensors atseveral heights into an other form, namely, into temporal variations of theheights of isothermal surfaces. Since coherent structures were found to advectwith the mean wind velocity, these temporal height variations may be transformedinto the spatial ones, i.e., into the xoz-plane section of the temperature field.In such a pictorial presentation coherent structures look like asymmetric columnsof heat, penetrating the whole atmospheric surface layer.Coherent structures also exist in the stable stratified surface layer, but they have aninverse asymmetry and occupy only the lower several metres. Wavelike activitydominates in the upper part of the stable surface layer.The characteristic time of surface-layer adjustment to the rapid changes of solarradiation (due to cloud shadows or cloud gaps) was found to be on the order ofone minute. Such a time interval is required for coherent structure to reach the topof surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliguseinov, A. K.: 1992, 'Experimental Study of the Thermal Inertia of Underlying Surface', Izvestia Atmos. Oceanic Phys. 28, 830–832.

    Google Scholar 

  • Antonia, R. A.: 1981, 'Conditional Sampling in Turbulent Measurement', Annu. Rev. Fluid Mech. 13, 131–156.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationship in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Cantwell, B.: 1981, 'Organized Motion in Turbulent Flow', Annu. Rev. Fluid Mech. 13, 457–515.

    Google Scholar 

  • Chou Min-Yui: 1966, 'Optimal Averaging Periods for the Measurements of Meteorological Fields', Izv. Acad. Sci. USSR, Ser. Atmos. Oceanic Phys. 2(5), 181–189.

    Google Scholar 

  • Davison, D. S.: 1974, 'The Translation Velocity of Convective Plums', Quart. J. Roy. Meteorol. Soc. 100(426), 572–592.

    Google Scholar 

  • Hedley, T. B. and Keffer, J. F.: 1974, 'Some Turbulent/Non-Turbulent Properties of the Outer Intermittent Region of a Boundary Layer', J. Fluid Mech. 64(4), 645–678.

    Google Scholar 

  • Ivanov, V. N. and Ordanovich, A. E.: 1969, 'Structure of the Atmospheric Surface Layer under Unstable Stratification', Works Inst. Exp. Meteorology, Obninsk, 91 pp.

  • Jodha, S. and Khalsa S.: 1980, 'Surface Layer Intermittency Investigated with Conditional Sampling', Boundary-Layer Meteorol. 19, 135–153.

    Google Scholar 

  • Kader, B. A.: 1988, 'Three-Layer Structure of an Unstably Stratified Atmospheric Surface Layer', Izvestia Atmos. Oceanic Phys. 24, 907–918.

    Google Scholar 

  • Koprov, B. M. and Sokolov, D. J.: 1975, 'Experimental Study of the Variability Heat Fluxes in the Atmospheric Surface Layer', Izvestia Atmos. Oceanic Phys. 11, 464–466.

    Google Scholar 

  • Koprov, B. M., Koprov, V. M., and Makarova, T. I.: 2000, 'Convective Structure in the Atmospheric Surface Layer', Izvestia Atmos. Oceanic Phys. 36, 37–47.

    Google Scholar 

  • Koprov, B. M., Zubkovsky, S. L., Koprov, V. M., Fortus, M. I., and Makarova, T. I.: 1998, 'Statistics of Air Temperature Spatial Variability in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 88, 399–423.

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M.: 1986, 'Theoretical Physics', v. VI, Hydrodynamics, third edition, Moscow, Nauka, 736 pp.

    Google Scholar 

  • Mahrt, L. and Howell, J. F.: 1994, 'The Influence of Coherent Structures and Micro-fronts on Scaling Law Using Global and Local Transforms', J. Fluid Mech. 260, 247–270.

    Google Scholar 

  • Monin, A. S. and Obukhov, A. M.: 1953, 'Dimensionless characteristics of Turbulence in the Atmosphere Surface Layer', Dokl. Akad. Nauk SSSR 24, 163–187.

    Google Scholar 

  • Obukhov, A. M.: 1946, 'Turbulence in Atmosphere with a Non-Uniform Temperature', Izv. Acad. Sci. USSR, Ser. Geophys. 9, 1392–1396.

    Google Scholar 

  • Obukhov, A. M.: 1960, 'Structure of Temperature and Velocity Fields under Conditions of Free Convection', Works Inst. Theor. Geophys. Acad. Sci. USSR 1, 95–115.

    Google Scholar 

  • Priestley, C. H. B.: 1959, Turbulent Transfer in the Lower Atmosphere, Chicago, University Press, 130 pp.

    Google Scholar 

  • Savijarvi, H.: 1999, 'A Model Study of the Atmospheric Boundary Layer in the Mars Pathfinder Lander Conditions', Quart. J. Roy. Meteorol. Soc. 125, 483–493.

    Google Scholar 

  • Vulfson, N. I.: 1961, Investigation of Convective Motion in Free Atmosphere, Moscow, edition of Acad. Sci. USSR, 522 pp.

  • Wilczak, J. and Tillman, J.: 1980, 'The Three-Dimensional Structure of Convection in the Atmospheric Surface Layer', J. Atmos. Sci. 37(11), 2424–2443.

    Google Scholar 

  • Williams, A. G. and Hacker, J. M.: 1992, 'The Composite Shape and Structure of Coherent Eddies in the Convective Boundary Layer', Boundary-Layer Meteorol. 61, 213–245.

    Google Scholar 

  • Yaglom, A. M: 1967, 'Inequality for the Mixed Momentum of Velocity and Temperature Derivatives in Locally Isotropic Turbulence', Izvestia Atmos. Oceanic Phys. 3, 593–595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koprov, B.M., Koprov, V.M., Makarova, T.I. et al. Coherent Structures in the Atmospheric Surface Layer under Stable and Unstable Conditions. Boundary-Layer Meteorology 111, 19–32 (2004). https://doi.org/10.1023/B:BOUN.0000010996.99753.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000010996.99753.d3

Navigation