Biomedical Microdevices

, Volume 6, Issue 4, pp 269–278 | Cite as

Endothelialized Networks with a Vascular Geometry in Microfabricated Poly(dimethyl siloxane)

  • Michael Shin
  • Kant Matsuda
  • Osamu Ishii
  • Hidetomi Terai
  • Mohammed Kaazempur-Mofrad
  • Jeffrey Borenstein
  • Michael Detmar
  • Joseph P. Vacanti
Article

Abstract

One key challenge in regenerating vital organs is the survival of transplanted cells. To meet their metabolic requirements, transport by diffusion is insufficient, and a convective pathway, i.e., a vasculature, is required. Our laboratory pioneered the concept of engineering a vasculature using microfabrication in silicon and Pyrex. Here we report the extension of this concept and the development of a methodology to create an endothelialized network with a vascular geometry in a biocompatible polymer, poly(dimethyl siloxane) (PDMS). High-resolution PDMS templates were produced by replica-molding from micromachined silicon wafers. Closed channels were formed by bonding the patterned PDMS templates to flat PDMS sheets using an oxygen plasma. Human microvascular endothelial cells (HMEC-1) were cultured for 2 weeks in PDMS networks under dynamic flow. The HMEC-1 cells proliferated well in these confined geometries (channel widths ranging from 35 μm to 5 mm) and became confluent after four days. The HMEC-1 cells lined the channels as a monolayer and expressed markers for CD31 and von Willebrand factor (vWF). These results demonstrate that endothelial cells can be cultured in confined geometries, which is an important step towards developing an in vitro vasculature for tissue-engineered organs.

tissue engineering replica molding biocompatible polymer endothelialization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.W. Ades, F.J. Candal, R.A. Swerlick, V.G. George, S. Summers, D.C. Bosse, and T.J. Lawley, J. Invest. Dermatol. 99, 683 (1992).Google Scholar
  2. A.S. Curtis and C.D. Wilkinson, J. Biomater. Sci. Polym. Ed. 9, 1313 (1998).Google Scholar
  3. D.O. Fauza, Curr. Opin. Pediatr. 15, 267 (2003). A. Folch and M. Toner, Annu. Rev. Biomed. Eng. 2, 2227 (2000).Google Scholar
  4. L.G. Griffith and G. Naughton, Science 295, 1009 (2002).Google Scholar
  5. M.R. Kaazempur-Mofrad, J.P. Vacanti, and R.D. Kamm, Comp. Fluid Solid Mech. 2, 864 (2001).Google Scholar
  6. S. Kaihara, J. Borenstein, R. Koka, S. Lalan, E.R. Ochoa, M. Ravens, H. Pien, B. Cunningham, and J.P. Vacanti, Tissue Eng. 6, 105 (2000).Google Scholar
  7. K. Kojima, L.J. Bonassar, A.K. Roy, H. Mizuno, J. Cortiella, and C.A. Vacanti, FASEB J. 17, 823 (2003).Google Scholar
  8. R. Langer and J.P. Vacanti, Science 260, 920 (1993).Google Scholar
  9. M. Madou, Fundamentals of Microfabrication: The Science of Minia-turization, 2nd edition (CRC Press, Boca Raton, FL, 2002).Google Scholar
  10. A.R. Metwalli, J.R. Colvert, and B.P. Kropp, Curr. Urol. Rep. 4, 156 (2003).Google Scholar
  11. G.K. Naughton and J.N. Mansbridge, Clin. Plast. Surg. 26, 579 (1999).Google Scholar
  12. H. Oshima, H. Inoue, K. Matsuzaki, M. Tanabe, and N. Kumagai, Hum. Cell 15, 118 (2003).Google Scholar
  13. A. Perets, Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld, and S. Cohen, J. Biomed. Mater. Res. 65A, 489 (2003).Google Scholar
  14. M.C. Peters, P.J. Polverini, and D.J. Mooney, J. Biomed. Mater. Res. 60, 668 (2002).Google Scholar
  15. G.D. Pins, M. Toner, and J.R. Morgan, FASEB J. 14, 593 (2000).Google Scholar
  16. S.R. Quake and A. Scherer, Science 290, 1536 (2000).Google Scholar
  17. Y. Tabata, M. Miyao, M. Yamamoto, and Y. Ikada, J. Biomater. Sci. Polym. Ed. 10, 957 (1999).Google Scholar
  18. A.I. Teixeira, G.A. Abrams, P.J. Bertics, C.J. Murphy, and P.F. Nealey, J. Cell Sci. 116, 1881 (2003).Google Scholar
  19. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D.E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).Google Scholar
  20. H. Wu, T.W. Odom, D.T. Chiu, and G.M. Whitesides, J. Am. Chem. Soc. 125, 554 (2003).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Michael Shin
    • 1
    • 2
  • Kant Matsuda
    • 3
  • Osamu Ishii
    • 1
    • 2
  • Hidetomi Terai
    • 1
    • 2
  • Mohammed Kaazempur-Mofrad
    • 2
  • Jeffrey Borenstein
    • 2
  • Michael Detmar
    • 3
  • Joseph P. Vacanti
    • 1
    • 2
  1. 1.Department of SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonUSA;
  2. 2.Center for Integration of Medicine and Innovative TechnologyCambridgeUSA
  3. 3.Cutaneous Biology Research Center and Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownUSA

Personalised recommendations