Skip to main content
Log in

An Open Question on Cyclic Relaxation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The problem discussed in this note is highly interesting. It is related to several dual iterative methods, such as the methods proposed by Kaczmarz, Hildreth, Agmon, Cryer, Mangasarian, Herman, Lent, Censor, and others. Cast as ‘row-action methods’ these algorithms have been proved as useful tools for solving large convex feasibility problems that arise in medical image reconstruction from projections, in inverse problems in radiation therapy, and in linear programming.

The question that we want to answer is how these algorithms behave when the feasible region is empty. It is shown that under certain conditions the primal sequence still converges while the dual sequence {y k } obeys the rule y k =u k +k v, where {u k } is a converging sequence and v is a fixed vector that satisfies A T v=0,v0,and,b T v>0. It is conjectured that these properties hold whenever the feasible region is empty. However, the validity of this claim remains an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Agmon, The relaxation method for linear inequalities, Canad. J. Math., 6 (1954), 382-392.

    Google Scholar 

  2. H. H. Bauschke, Projection algorithms: Results and open problems, in D. Butnariu, Y. Censor and S. Reich (eds.), Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, Studies in Comput. Math., Elsevier Science, Amsterdam, 2001, pp. 11-22.

    Google Scholar 

  3. H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), pp. 367-426.

    Google Scholar 

  4. H. H. Bauschke, J. M. Borwein, and A. S. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, in Recent Developments in Optimization Theory and Nonlinear Analysis (Jerusalem,1995), Amer. Math. Soc., Providence, RI, 1997, pp. 1-38.

    Google Scholar 

  5. Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM Rev., 23 (1981), pp. 444-466.

    Google Scholar 

  6. Y. Censor, M. D. Altschuler, and W. D. Powlis, A computational solution of the inverse problem in radiation-therapy treatment planning, A ppl. Math. Comput., 25 (1988), pp. 57-87.

    Google Scholar 

  7. Y. Censor, P. O. B. Eggermont, and D. Gordon, Strong underrelaxation in Kaczmarz's method for inconsistent systems, Numer. Math., 41 (1983), pp. 83-92.

    Google Scholar 

  8. Y. Censor and T. Elfving, New methods for linear inequalities, Li near Algebra Appl.,42 (1982), pp. 199-211.

    Google Scholar 

  9. Y. Censor and S. A. Zenios, Parallel Optimization, Theory, Algorithms, and Applications, Oxford Univ. Press, 1997.

  10. R. W. Cottle, G. H. Golub, and R. S. Sacher, On the solution of large, structured linear complementarity problems: The block partitioned case, Appl. Math. Optim., 4 (1978), pp. 348-363.

    Google Scholar 

  11. C. W. Cryer, The solution of a quadratic programming problem using systematic overrelaxation, SIA M J. Control, 9 (1971), pp. 385-392.

    Google Scholar 

  12. A. Dax, The convergence of linear stationary iterative processes for solving singular unstructured systems of linear equations, SIAM Rev., 32 (1990), pp. 611-635.

    Google Scholar 

  13. A. Dax, On theory and practice of row relaxation methods, in D. Butnariu, Y. Censor and S. Reich (eds.), Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, Studies in Comput. Math., Elsevier Science, Amsterdam, 2001, pp. 153-186.

    Google Scholar 

  14. A. Dax, The smallest correction of an inconsistent system of linear inequalities, Optimization and Engineering, 2 (2001), pp. 349-359.

    Google Scholar 

  15. A. Dax, The adventures of a simple algorithm, Linear Algebra Appl., 361 (2003), pp. 41-61.

    Google Scholar 

  16. A. Dax and V. P. Sreedharan, On theorems of the alternative and duality, J. Optim. Theory Appl., 94 (1997), pp. 561-590.

    Google Scholar 

  17. R. De Leone and O. L. Mangasarian, Serial and parallel solution of large scale linear programs by augmented Lagrangian successive overrelaxation, in A. Kurzhanski, K. Neuwmann and D. Pallaschke (eds.), Optimization, Parallel Processing and Applications, Lecture Notes in Economics and Mathematical Systems 304, Springer-Verlag, Berlin, 1988, pp. 103-124.

    Google Scholar 

  18. A. R. De Pierro and A. N. Iusem, A simultaneous projection method for linear inequalities, Linear Algebra Appl., 64 (1985), pp. 243-253.

    Google Scholar 

  19. A. R. De Pierro and A. N. Iusem, On the asymptotic behaviour of some alternate smoothing series expansion iterative methods, Linear Algebra Appl., 130 (1990), pp. 3-24.

    Google Scholar 

  20. L. G. Gubin, B. T. Polyak, and E. V. Raik, The method of projections for finding the common point of convex sets, USSR Comput. Math. Math. Phys., 7 (1967), pp. 1-24.

    Google Scholar 

  21. S. P. Han, Least-squares solution of linear inequalities, Technical Report 2141, Math. Res. Center, Univ. of Wisconsin-Madison, 1980.

  22. M. Hanke and W. Niethammer, On the acceleration of Kaczmarz's method for inconsistent linear systems, Linear Algebra Appl., 130 (1990), pp. 83-98.

    Google Scholar 

  23. M. Hanke and W. Niethammer, On the use of small relaxation parameters in Kaczmarz's method, Z. Angew. Math. Mech., 70 (1990), pp. 575-576.

    Google Scholar 

  24. G. T. Herman, A relaxation method for reconstructing object from noisy x-rays, Math. Prog., 8 (1975), pp. 1-19.

    Google Scholar 

  25. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.

    Google Scholar 

  26. G. T. Herman and A. Lent, A family of iterative quadratic optimization algorithms for pairs of inequalities with applications in diagnostic radiology, Math. Programming Study, 9 (1978), pp. 15-29.

    Google Scholar 

  27. C. Hildreth, A quadratic programming procedure, Naval Res. Logist. Quart., 4 (1957), pp. 79-85; Erratum, Ibid., p. 361.

    Google Scholar 

  28. A. N. Iusem and A. R. De Pierro, A simultaneous iterative method for computing projections on polyhedra, SIAM J. Control, 25 (1987), pp. 231-243.

    Google Scholar 

  29. A. N. Iusem and A. De Pierro, On convergence properties of Hildreth's quadratic programming algorithm, Math. Programming, 47 (1990), pp. 37-51.

    Google Scholar 

  30. S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Acad. Polon. Sci. Lett. A, 35 (1937), pp. 355-357.

    Google Scholar 

  31. A. Lent and Y. Censor, Extensions of Hildreth's row-action method for quadratic programming, SIAM J. Control Optim., 18 (1980), pp. 444-454.

    Google Scholar 

  32. D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York,1969.

    Google Scholar 

  33. O. L. Mangasarian, Nonlinear Programming, Mc Graw-Hill, New York, 1969.

    Google Scholar 

  34. O. L. Mangasarian, Solution of symmetric linear complementarity problems by iterative methods, J. Optim. Theory Appl., 22 (1977), pp. 465-485.

    Google Scholar 

  35. O. L. Mangasarian, Iterative solution of linear programs, SIAM J. Numer. Anal., 18 (1981), pp. 606-614.

    Google Scholar 

  36. O. L. Mangasarian, Sparsity-preserving SOR algorithms for separable quadratic and linear program, Comput. Oper. Res., 11 (1984), pp. 105-112.

    Google Scholar 

  37. O. L. Mangasarian and R. De Leone, Parallel successive overrelaxation methods for symmetric linear complementarity problems and linear programs, J. Optim. Theory Appl., 54 (1987), pp. 437-446.

    Google Scholar 

  38. T. S. Motzkin and I. J. Schoenberg, The relaxation method for linear inequalities, Canad. J. Math., 6 (1954), pp. 393-404.

    Google Scholar 

  39. F. Natterer, The Mathematics of Computerized Tomography, Wiley, New York, 1986.

    Google Scholar 

  40. K. Tanabe, Projection method for solving a singular system of linear equations and its applications, Numer. Math., 17 (1971), pp. 203-214.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dax, A. An Open Question on Cyclic Relaxation. BIT Numerical Mathematics 43, 929–943 (2003). https://doi.org/10.1023/B:BITN.0000014544.99142.62

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BITN.0000014544.99142.62

Navigation