Biochemistry (Moscow)

, Volume 69, Issue 10, pp 1055–1066 | Cite as

Apoptosis in Unicellular Organisms: Mechanisms and Evolution

  • A. V. Gordeeva
  • Y. A. Labas
  • R. A. Zvyagilskaya


Data about the programmed death (apoptosis) in unicellular organisms, from bacteria to ciliates, are discussed. Firstly apoptosis appeared in lower eukaryotes, but its mechanisms in these organisms are different from the classical apoptosis. During evolution, the apoptotic process has been improving gradually, with reactive oxygen species and Ca2+ playing an essential role in triggering apoptosis. All eukaryotic organisms have apoptosis inhibitors, which might be introduced by viruses. In the course of evolution, caspases and apoptosis-inducing factor appeared before other apoptotic proteins, with socalled death receptors being the last among them. The functional analogs of eukaryotic apoptotic proteins take parts in the programmed death of bacteria.

apoptosis bacteria Ca2+ caspases death receptors evolution eukaryotes reactive oxygen species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Samuilov, V.D., Oleskin, A.V., and Lagunova, E.M. (2000) Biochemistry(Moscow), 65,873–887.Google Scholar
  2. 2.
    Ameisen, J.C. (1996) Science,272,1278–1279.Google Scholar
  3. 3.
    Lewis, K. (2000) Microbiol. Mol. Rev.,64,503–514.Google Scholar
  4. 4.
    Proskuryakov, S.Y., Gabaj, V.L., and Konoplyannikov, A. G. (2002) Biochemistry(Moscow), 67,387–408.Google Scholar
  5. 5.
    Mills, J.C., Stone, N.L., and Pittman, R.N. (1999) J. Cell. Biol.,146,703–708.Google Scholar
  6. 6.
    Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A., and Nagata, S. (2002) Nature,417,182–187.Google Scholar
  7. 7.
    Strasser, A., O'Connor, L., and Vishva, M.D. (2002) Annu. Rev. Biochem.,69,217–245.Google Scholar
  8. 8.
    Kruman, I.I., and Mattson, M.P. (1999) J. Neurochem., 72,529–540.Google Scholar
  9. 9.
    Tonshin, A.A., Saprunova, V.B., Solodovnikova, I.M., Bakeeva, L.E., and Yagughinsky, L.S. (2003) Biochemistry(Moscow), 68,875–881.Google Scholar
  10. 10.
    Oleinick, N.L., Morris, R.L., and Belichenko, I. (2002) Photochem. Photobiol. Sci.,1,1–21.Google Scholar
  11. 11.
    Kamata, H., and Hirata, H. (1999) Cell. Signal.,11,1–14.Google Scholar
  12. 12.
    Earnshaw, W.C., Martins, L.M., and Kaufmann, S.H. (1999) Annu. Rev. Biochem.,68,383–424.Google Scholar
  13. 13.
    Liang, H., and Fesik, S.W. (1997) J. Mol. Biol.,274,291–302.Google Scholar
  14. 14.
    Köhler, C., Orrenius, S., and Zhivotovsky, B. (2002) J. Immunol. Meth.,265,97–110.Google Scholar
  15. 15.
    Grossmann, J., Mohr, S., Lapentina, E.G., Fiocchi, C., and Levine, A.D. (1998) Am. J. Physiol.,274,G1117–G1124.Google Scholar
  16. 16.
    Salvesen, G.S., and Dixit, V.M. (1999) Proc. Natl. Acad. Sci. USA, 96,10964–10967.Google Scholar
  17. 17.
    Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998) Nature,391,43–50.Google Scholar
  18. 18.
    Philchenkov, A.A. (2003) Biochemistry (Moscow), 68,365–376.Google Scholar
  19. 19.
    Hirata, H., Takahashi, A., Kobayashi, S., Yonehara, S., Sawai, H., Okazaki, T., Yamamoto, K., and Sasada, M. (1998) J. Exp. Med.,187,587–600.Google Scholar
  20. 20.
    Susin, S.A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., Costantini, P., Ferri, K.F., Irinopoulou, T., Prevost, M.C., Brothers, G., Mak, T.W., Penninger, J., Earnshaw, W.C., and Kroemer, G. (2000) J. Exp. Med.,192,571–580.Google Scholar
  21. 21.
    Crompton, M. (1999) Biochem. J.,341,233–249.Google Scholar
  22. 22.
    Pozzan, T., and Rizzuto, R. (2000) Eur. J. Biochem.,267, 5269–5273.Google Scholar
  23. 23.
    Bernardi, P. (1999) Phys. Rev.,79,1127–1155.Google Scholar
  24. 24.
    Ichas, F., and Mazat, J.-P. (1998) Biochim. Biophys. Acta, 1366,33–50.Google Scholar
  25. 25.
    Novgorodov, S.A., Gudz, T.I., Brierley, G.P., and Pfeiffer, D.R. (1994) Arch. Biochem. Biophys.,311,219–228.Google Scholar
  26. 26.
    Lapidus, R.G., and Sokolove, P.M. (1994) J. Biol. Chem., 269,18931–18936.Google Scholar
  27. 27.
    Broekemeier, K.M., Dempsey, M.E., and Pfeiffer, D.R. (1989) J.Biol.Chem.,264,7826–7830.Google Scholar
  28. 28.
    Halestrap, A.P., McStay, G.P., and Clarke, S.J. (2002) Biochimie,84,153–166.Google Scholar
  29. 29.
    Kim, J.S., He, L., Qian, T., and Lemaster, J.J. (2003) Curr. Mol. Med.,3,527–535.Google Scholar
  30. 30.
    Kim, J.S., He, L., and Lemaster, J.J. (2003) Biochem. Biophys. Res. Commun.,304,463–470.Google Scholar
  31. 31.
    Budihardjo, I., Oliver, H., Lutter,M., Luo, X., and Wang, X. (1999) Annu. Rev. Cell. Dev. Biol.,15,269–290.Google Scholar
  32. 32.
    Robertson, J.D., Orrenius, S., and Zhivotovsky, B. (2000) J. Struct. Biol.,129,346–358.Google Scholar
  33. 33.
    Nichols, P. (1974) Biochim. Biophys. Acta,346,261–310.Google Scholar
  34. 34.
    Gorbenko, G.P. (1999) Biochim. Biophys. Acta,1420,1–13.Google Scholar
  35. 35.
    Rytömaa, M., and Kinnunen, P.K.J. (1995) J. Biol. Chem., 270,3197–3202.Google Scholar
  36. 36.
    Ott,M., Robertson, J.D., Gogvadze,V., Zhivotovsky, B., and Orrenius,S. (2002) Proc. Natl. Acad. Sci. USA,99, 1259–1263.Google Scholar
  37. 37.
    Lorenzo, H.K., Susin, S.A., Penninger, J., and Kroemer, G. (1999) Cell Death Differ.,6,516–524.Google Scholar
  38. 38.
    Punj, V., and Chakrabarty, A.M. (2003) Cell. Microbiol.,5, 225–231.Google Scholar
  39. 39.
    Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T., and Yasuhiko, Y. (2002) J. Biol. Chem.,277,34287–34294.Google Scholar
  40. 40.
    Gogvadze, V., Robertson, J.D., Zhivotovsky, B., and Orrenius, S. (2001) J. Biol. Chem.,276,19066–19701.Google Scholar
  41. 41.
    Skulachev, V.P. (2000) IUBMB Life,49,365–373.Google Scholar
  42. 42.
    Guicciardi, M.E., Deussing, J., Miyoshi, H., Bronk, S.F., Svingen, P.A., Peters, C., Kaufmann, S.H., and Gores, G. J. (2000) J. Clin. Invest.,106,1127–1136.Google Scholar
  43. 43.
    Vousden, K.H., and Vande Woude, G.F. (2000) Nature Cell. Biol.,2,E178–E180.Google Scholar
  44. 44.
    Nakano, K., and Vousden, K.H. (2001) Mol. Cell,7,683–694.Google Scholar
  45. 45.
    Chatellard Causse, C., Blot, B., Cristina, N., Torch, S., Missotten, M., and Sadoul, R. (2002) J. Biol. Chem.,277, 29108–29115.Google Scholar
  46. 46.
    Aubry, L., Mattei, S., Blot, B., Sadoul, R., Satre, M., and Klein, G. (2002) J. Biol. Chem.,277,21947–21954.Google Scholar
  47. 47.
    Carafoli, E., and Molinari, M. (1998) Biochem. Biophys. Res. Commun.,247,193–203.Google Scholar
  48. 48.
    Bordone, L., and Campbell, C. (2002) J. Biol. Chem.,277, 26673–26680.Google Scholar
  49. 49.
    Kobayashi, S., Yamashita, K., Takeoka, T., Ohtsuki, T., Suzuki, Y., Takahashi, R., Yamamoto, K., Kaufmann, S. H., Uchiyama, T., Sasada, M., and Takahashi, A. (2002) J. Biol. Chem.,277,33968–33977.Google Scholar
  50. 50.
    Grook, N.E., Clem, R.J., and Miller, L.K. (1994) J. Virol.,67,2168–2174.Google Scholar
  51. 51.
    Hay, B.A., Wassarman, D.A., and Rubin, G.M. (1995) Cell,83,1253–1262.Google Scholar
  52. 52.
    Uren, A.G., Pakusch, M., Hawkins, C.J., Puls, K.L., and Vaux, D.L. (1996) Proc. Natl. Acad. Sci. USA,93,4974–4978.Google Scholar
  53. 53.
    Miller, L.K. (1999) Trends Cell. Biol.,9,323–328.Google Scholar
  54. 54.
    Joazeiro, C.A., and Weissman, A.M. (2000) Cell,102, 549–552.Google Scholar
  55. 55.
    Deveraux, Q.L., Takahashi, R., Salvesen, G.S., and Reed, J.S. (1997) Nature,388,300–304.Google Scholar
  56. 56.
    Huang, Y., Park, Y.C., Rich, R.L., Segal, D., Myszka, D. G., and Wu, H. (2001) Cell,104,781–790.Google Scholar
  57. 57.
    Yang, Y., and Yu, X. (2003) FASEB J.,17,790–799.Google Scholar
  58. 58.
    Suzuki, Y., Kakabayashi, Y., and Takahashi, R. (2001) Proc. Natl.Acad.Sci.USA,98,8662–8667.Google Scholar
  59. 59.
    Srinivasula, S.M., Hedge, R., Saleh, A., Datta,P., Shiozaki, E., Chal, J., Lee, R.A., Robbins, P.D., Fernandes-Alnemri, T., Shi, Y., and Alnemri, E.S. (2001) Nature,410,112–116.Google Scholar
  60. 60.
    Nicholson, D.W. (2001) Nature,410,33–34.Google Scholar
  61. 61.
    Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. (2001) Mol. Cell,8,613–621.Google Scholar
  62. 62.
    MacFarlane, M., Merrison, W., Bratton, S.B., and Cohen, G.M. (2002) J. Biol. Chem.,277,36611–36616.Google Scholar
  63. 63.
    Hu, S., and Yang, X. (2003) J. Biol. Chem.,278,10055–10060.Google Scholar
  64. 64.
    Fu, J., Jin, Y., and Arend, L.J. (2003) J. Biol. Chem.,278, 52660–52672.Google Scholar
  65. 65.
    Deveraux, Q.L., Leo, E., Stennicke, H.R., Welsh, K., Salvesen, G.S., and Reed, J.C. (1999) EMBO J.,18,5242–5251.Google Scholar
  66. 66.
    Fleury, C., Mignotte, B., and Vayssiere, J.L. (2002) Biochimie,84,131–141.Google Scholar
  67. 67.
    Maulik, N., Yoshida, T., and Das, D.K. (1998) Free Rad. Biol. Med.,24,869–875.Google Scholar
  68. 68.
    Tan, S., Sagara, Y., Liu, Y., Maher, P., and Schubert, D. (1998) J. Cell Biol.,141,1423–1432.Google Scholar
  69. 69.
    Schulz, J.B., Weller, M., and Klockgether, T. (1996) J. Neurosci.,16,4696–4706.Google Scholar
  70. 70.
    Schulz, J.B., Bremen, D., Reed, J.C., Lommatzsch, J., Takayama, S., Wüllner, U., Löschmann, P.A., Klockgether, T., and Weller, M. (1997) J. Neurochem.,69, 2075–2086.Google Scholar
  71. 71.
    Gordeeva, A.V., Zvyagilskaja, R.A., and Labas, Y.A. (2003) Biochemistry(Moscow), 68,1077–1080.Google Scholar
  72. 72.
    Keller, J.N., Guo, Q., Holtsberg, F.W., Bruce-Keller, A. J., and Mattson, M.P. (1998) J.Neurosci.,18,4439–4450.Google Scholar
  73. 73.
    Zoratti, M., and Szabo, I. (1995) Biochim. Biophys. Acta, 1241,139–176.Google Scholar
  74. 74.
    Vercesi, A.E., Kowaltowski, A.J., Grijalba, M.T., Meinicke, A.R., and Castilho, R.F. (1997) Biosci. Rep., 17,43–52.Google Scholar
  75. 75.
    Yuan, J. (1996) J. Cell. Biochem.,60,4–11.Google Scholar
  76. 76.
    Seipp, S., Schmich, J., and Leitz, T. (2001) Development, 128,4891–4898.Google Scholar
  77. 77.
    Skulachev, V.P. (1999) Biochemistry(Moscow), 64,1418–1426.Google Scholar
  78. 78.
    Vardi, A., Berman-Frank, I., Rozenberg, T., Hadas, O., Kaplan, A., and Levine, A. (1999) Curr. Biol.,l9,1061–1064.Google Scholar
  79. 79.
    Segovia, M., Haramaty, L., Berges, J.A., and Falkowski, P. G. (2003) Plant Physiol.,132,99–105.Google Scholar
  80. 80.
    Ha, M.W., Hou, K.Z., Liu, Y.P., and Yuan, Y. (2003) Ai Zheng,22,691–694.Google Scholar
  81. 81.
    Arnoult, D., Akarid, K., Grodet, A., Petit, P.X., Estaquier, J., and Ameisen, J.C. (2002) Cell Death Differ.,9,65–81.Google Scholar
  82. 82.
    Das, M., Mukherjee, S.B., and Shaha, C. (2001) J. Cell. Sci.,114,2461–2469.Google Scholar
  83. 83.
    Liu, J., Shen, H.M., and Ong, C.N. (2001) Life Sci.,69, 1833–1850.Google Scholar
  84. 84.
    Mukherjee, S.B., Das, M., Sudhandiran, G., and Shaha, C. (2002) J. Biol. Chem.,277,24717–24727.Google Scholar
  85. 85.
    Al-Olayan, E.M., Williams, G.T., and Hurd, H. (2002) Int. J. Parasitol.,32,1133–1143.Google Scholar
  86. 86.
    Ouaissi, A. (2003) Kinetoplastid. Biol. Dis.,2,5.Google Scholar
  87. 87.
    Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen, P., Tettelin, H., and Oliver, S. G. (1996) Science,274 (5287),563–567.Google Scholar
  88. 88.
    Madeo, F., Engelhardt, S., Herker, E., Lehmann, N., Maldener, C., Proksch, A., Wissing, S., and Frohlich, K.-U. (2002) Curr. Genet.,41,208–216.Google Scholar
  89. 89.
    Yamaki, M., Umehara, T., Chimura, T., and Horikoshi, M. (2001) Genes Cells,6,1043–1054.Google Scholar
  90. 90.
    Madeo, F., Fröhlich, E., Ligr, M., Grey, M., Sigrist, S.J., Wolf, D.H., and Fröhlich, K.U. (1999) J. Cell. Biol.,145, 757–767.Google Scholar
  91. 91.
    Laun, P., Pichova, A., Madeo, F., Fuchs, J., Ellinger, A., Kohlwein, S., Dawes, I., Fröhlich, K.-U., and Breitenbach, M. (2001) Mol. Microbiol.,39,1166–1173.Google Scholar
  92. 92.
    Madeo, F., Herker, E., Maldener, C., Wissing, S., Lachelt, S., Herlan, M., Fehr, M., Lauber, K., Sigrist, S.J., Wesselborg, S., and Frohlich, K.U. (2002) Mol. Cell,9, 911–917.Google Scholar
  93. 93.
    Skulachev, V.P. (2002) FEBS Lett.,528,23–26.Google Scholar
  94. 94.
    Manon, S., Chaudhuri, B., and Guerin, M. (1997) FEBS Lett.,415,29–32.Google Scholar
  95. 95.
    Xu, Q., and Reed, J.C. (1998) Mol. Cell,1,337–346.Google Scholar
  96. 96.
    Qi, H., Li, T.K., Kuo, D., Nur-E-Kamal, A., and Liu, L. F. (2003) J. Biol. Chem.,278,15136–15141.Google Scholar
  97. 97.
    Zha, H., Fisk, H.A., Yaffe, M.P., Mahajan, N., Herman, B., and Reed, J.C. (1996) Mol Cell Biol.,16,6494–6508.Google Scholar
  98. 98.
    Priault, M., Camougrand, N., Kinnally, K.W., Vallette, F. M., and Manon, S. (2003) FEMS Yeast Res.,4,15–27.Google Scholar
  99. 99.
    Sawada, M., Sun, W., Hayes, P., Leskov, K., Bootman, D. A., and Matsuyama, S. (2003) Nat. Cell Biol.,5,320–329.Google Scholar
  100. 100.
    Fraser, A., and James, C. (1998) Trends Cell. Biol.,8,219–221.Google Scholar
  101. 101.
    Fröhlich, K.-U., and Madeo, F. (2000) FEBS Lett.,473,6–9.Google Scholar
  102. 102.
    Chen, S.R., Dunigan, D.D., and Dickman, M.B. (2003) Free Rad. Biol. Med.,34,1315–1325.Google Scholar
  103. 103.
    Camougrand, N., Grelaud-Coq, A., Marza, E., Priault, M., Bessoule, J.J., and Manon, S. (2003) Mol.Microbiol., 47,495–506.Google Scholar
  104. 104.
    Komatsu, K., Hopkins, K.M., Lieberman, H.B., and Wang, H.-G. (2000) FEBS Lett.,481,122–126.Google Scholar
  105. 105.
    Weinberger, M., Ramachandran, L., and Burchans,W. (2003) IUBMB Life,55,467–472.Google Scholar
  106. 106.
    Uren, A.G., Beilharz,T., O'Connell, M.J., Bugg, S.J., van Driel, R., Vaux, D.L., and Lithgow, T. (1999) Proc. Natl. Acad. Sci. USA,96,10170–10175.Google Scholar
  107. 107.
    Fahrenkrog, B., Sauder, U., and Aebi, U. (2004) J. Cell. Sci.,117,15–26.Google Scholar
  108. 108.
    Ludovico, P., Sousa, M.J., Silva, M.T., Leao, C., and Corte-Real, M. (2001) Microbiology,147,2409–2415.Google Scholar
  109. 109.
    Ludovico, P., Rodrigues, F., Almeida, A., Silva, M.T., Barrientos, A., and Corte-Real, M. (2002) Mol. Biol. Cell, 13,2598–2606.Google Scholar
  110. 110.
    Phillips, A.J., Sudbery, I., and Ramsdale, M. (2003) Proc. Natl. Acad. Sci. USA,100,14327–14332.Google Scholar
  111. 111.
    Ludovico, P., Sansonetty, F., Silva, M.T., and Corte-Real, M. (2003) FEMS Yeast Res.,3,91–96.Google Scholar
  112. 112.
    Severin, F.F., and Hyman, A.A. (2002) Curr Biol.,12, R233–235.Google Scholar
  113. 113.
    Abdullaev, Z.Kh., Bodrova, M.E., Chernyak, B.V., Dolgikh, D.A., Kluck, R.M., Pereverzev, M.O., Arseniev, A.S., Efremov, R.G., Kirpichnikov, M.P., Mokhova, E. N., Newmeyer, D.D., Roder, H., and Skulachev, V.P. (2002) Biochem. J.,362,749–754.Google Scholar
  114. 114.
    Roucou, X., Prescott, M., Devenish, R.J., and Nagley, P. (2000) FEBS Lett.,471,235–239.Google Scholar
  115. 115.
    Stanger, B.Z., Leder, P., Lee, T.H., Kim, E., and Seed, B. (1995) Cell,81,513–523.Google Scholar
  116. 116.
    Cornillon, S., Foa, C., Davoust, J., Buonavista, N., Gross, J.D., and Golstein, P. (1994) J. Cell Sci.,107,2691–2704.Google Scholar
  117. 117.
    Olie, R.A., Durrieu, F., Cornillon, S., Loughran, G., Gross, J., Earnshaw, W.C., and Golstein, P. (1998) Curr. Biol.,8,955–958.Google Scholar
  118. 118.
    Arnoult, D., Tatischeff, I., Estaquier, J., Girard, M., Sureau, F., Tissier, J.P., Grodet, A., Dellinger, M., Traincard, F., Kahn, A., Ameisen, J.-C., and Petit, P.X. (2001) Mol. Biol. Cell,12,3016–3030.Google Scholar
  119. 119.
    Tatischeff, I., Petit, P.X., Grodet, A., Tissier, J.P., Duband Goulet, I., and Ameisen, J.C. (2001) Eur. J. Cell. Biol.,80,428–441.Google Scholar
  120. 120.
    Maercker, C., Kortwig, H., Nikiforov, M.A., Allis, C.D., and Lipps, H.J. (1999) Mol. Biol. Cell,10,3003–3014.Google Scholar
  121. 121.
    Kobayashi, T., and Endoh, H. (2003) Cell Death Differ.,10, 634–640.Google Scholar
  122. 122.
    Jaso Friedmann, L., Leary, J.H.,3rd, and Evans, D.L. (2000) Exp.Parasitol.,96,75–88.Google Scholar
  123. 123.
    Volkel, H., Kurz, U., Linder, J., Klumpp, S., Gnau, V., Jung, G., and Schultz, J.E. (1996) Eur. J. Biochem.,238, 198–206.Google Scholar
  124. 124.
    Maubach, G., Schilling, K., Rommerskirch, W., Wenz, I., Schultz, J.E., Weber, E., and Wiederanders, B. (1997) Eur. J. Biochem.,250,745–750.Google Scholar
  125. 125.
    Banno, Y., Yano, K., and Nozawa, Y. (1983) Eur. J. Biochem.,132,563–568.Google Scholar
  126. 126.
    Christensen, S.T., Chemnitz, J., Straarup, E.M., Kristiansen, K., Wheatley, D.N., and Rasmussen, L. (1998) Cell. Biol. Int.,22,591–598.Google Scholar
  127. 127.
    Heussler, V.T., Machado, J.,Jr., Fernandez, P.C., Botteron, C., Chen, C.G., Pearse, M.J., and Dobbelaere, D.A. (1999) Proc. Natl. Acad. Sci. USA,96,7312–7317.Google Scholar
  128. 128.
    Aga, E., Katschinski, D.M., van Zandbergen, G., Laufs, H., Hansen, B., Muller,K., Solbach, W., and Laskay, T. (2002) J.Immunol.,169,898–905.Google Scholar
  129. 129.
    Chose, O., Noel, C., Gerbod, D., Brenner, C., Viscogliosi, E., and Roseto, A. (2002) Exp. Cell. Res.,276,32–39.Google Scholar
  130. 130.
    Christensen, S.T., Sorensen, H., Beyer, N.H., Kristiansen, K., Rasmussen, L., and Rasmussen, M.I. (2001) Cell. Biol. Int.,25,509–519.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. V. Gordeeva
    • 1
  • Y. A. Labas
    • 1
  • R. A. Zvyagilskaya
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations