Skip to main content
Log in

Protein Folding in the Cell: On the Mechanisms of Its Acceleration

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The mechanisms responsible for protein folding in the cell can be divided in two groups. The ones in the first group would be those preventing the aggregation of unfolded polypeptide chains or of incompletely folded proteins, as well as the mechanisms which provide for the energy-consuming unfolding of incorrectly folded structures, giving them a chance to begin a new folding cycle. Mechanisms of this type do not affect the rate of folding (it occurs spontaneously), yet considerably increase the efficiency of the entire process. By contrast, the mechanisms belonging to second group actually accelerate protein folding by exerting a direct influence on the rate-limiting steps of the overall reaction. Although not a conventional one, such a classification helps define the topic of this review. Its main purpose is to discuss the ability of chaperonins (and that of some chaperones) to interact directly with substrate proteins in the course of their folding and thus accelerate the ratelimiting steps of that process. (Mechanisms of protein folding acceleration produced by the action of enzymes, e.g., peptidylprolyl cis/trans isomerase and protein disulfide isomerase, are not considered in this review.) Specific cases demonstrating an accelerated folding of some proteins encapsulated in the bacterial chaperonin GroEL cavity are considered, and the conditions favoring such acceleration are examined. Experimental data supporting the notion that the structure and functional properties of GroEL are not optimal for an effective folding of many of its substrate proteins is discussed. The current status of research on the mechanism behind the active participation of different subunits of eucaryotic cytosol chaperonin (CCT) in the final steps of the folding of actin and tubulin is reviewed. Particular attention is devoted to steric chaperones, which dramatically accelerate the formation of the native structure of their substrate proteins by stabilizing certain folding intermediates. The structural foundations underlying the effect of the subtilisin pro-domain on the folding of the mature enzyme are considered. The prospects of future studies into the mechanisms responsible for accelerating protein folding in the cell are commented upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anfinsen, C. B. (1973) Science, 181, 223–230.

    PubMed  Google Scholar 

  2. Dobson, C., and Karplus, M. (1999) Curr. Opin. Struct. Biol., 9, 92–101.

    Article  PubMed  Google Scholar 

  3. Coyle, J. E., Jaeger, J., Gross, M., Robinson, C. V., and Radford, S. E. (1997) Struct. Fold. Des., 2, R93–R104.

    Google Scholar 

  4. Bukau, B., and Horwich, A. L. (1998) Cell, 92, 351–366.

    Article  PubMed  Google Scholar 

  5. Gutsche, L., Erssen, L. O., and Baumeister, W. (1999) J. Mol. Biol., 293, 295–312.

    Article  PubMed  Google Scholar 

  6. Fewell, S. W., Travers, K. J., Weissman, J. C., and Brodsky, J. L. (2001) Annu. Rev. Genet., 35, 149–191.

    Article  PubMed  Google Scholar 

  7. Hartl, F. U., and Hayer-Hartl, M. (2002) Science, 295, 1852–1858.

    Article  PubMed  Google Scholar 

  8. Balbach, J., and Schmid, F. X. (2000) in Mechanisms of Protein Folding(Pain, R. H., ed.) IRL Press, Oxford, pp. 212–249.

    Google Scholar 

  9. Wu, Y., and Matthews, C. R. (2002) J. Mol. Biol., 322, 1–13.

    Article  PubMed  Google Scholar 

  10. Creighton, T. E. (2000) in Mechanisms of Protein Folding(Pain, R. H., ed.) IRL Press, Oxford, pp. 250–278.

  11. Frand, A. R., Cuozzo, J. W., and Kaiser, C. A. (2000) Trends Cell Biol., 10, 203–210.

    Article  PubMed  Google Scholar 

  12. Ellis, R. J., and Hartl, F. U. (1996) FASEB J., 10, 20–26.

    PubMed  Google Scholar 

  13. Todd, M. J., Lorimer, G. H., and Thirumalai, D. (1996) Proc. Natl. Acad. Sci. USA, 93, 4030–4035.

    Article  PubMed  Google Scholar 

  14. Corrales, F. J., and Fersht, A. R. (1996) Proc. Natl. Acad. Sci. USA, 93, 4509–4512.

    Article  PubMed  Google Scholar 

  15. Sosnick, T. R., Mayne, L., Hiller, R., and Englander, S. W. (1994) Nature Struct. Biol., 1, 149–156.

    Article  PubMed  Google Scholar 

  16. Shtilerman, M., Lorimer, G., and Englander, S. W. (1999) Science, 284, 822–825.

    Article  PubMed  Google Scholar 

  17. Fayet, O., Ziegelhoffer, T., and Georgopoulos, C. (1989) J. Bacteriol., 171, 1379–1385.

    PubMed  Google Scholar 

  18. Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, N. L., and Furtak, K. (1993) Cell, 74, 909–917.

    Article  PubMed  Google Scholar 

  19. Houry, W. A., Frishman, D., Eckerskom, C., Lottspeich, F., and Hartl, F. U. (1999) Nature, 402, 147–154.

    Article  PubMed  Google Scholar 

  20. Braig, K., Otwinowcki, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., and Sigler, P. B. (1994) Nature, 371, 578–586.

    Article  PubMed  Google Scholar 

  21. Xu, Z., Horwich, A. L., and Sigler, P. B. (1997) Nature, 388, 741–750.

    Article  PubMed  Google Scholar 

  22. Roseman, A. M., Chen, S. X., White, H., Braig, K., and Sabil, H. R. (1996) Cell, 87, 241–251.

    Article  PubMed  Google Scholar 

  23. Fenton, W. A., Kashi, Y., Furtak, K., and Horwich, A. L. (1994) Nature, 371, 614–619.

    Article  PubMed  Google Scholar 

  24. Farr, G. W., Furtak, K., Rowland, M. B., Ranson, N. A., Sabil, H. R., Kirchhausen, T., and Horwich, A. L. (2000) Cell, 100, 561–573.

    Article  PubMed  Google Scholar 

  25. Hunt, J. F., Weaver, A. J., Landry, S. L., Gierasch, L., and Deisenhofer, J. (1996) Nature, 379, 37–45.

    Article  PubMed  Google Scholar 

  26. Saibil, H. R., Kirchhausen, T., and Horwich, A. L. (2000) Cell, 100, 561–573.

    Article  PubMed  Google Scholar 

  27. Yifrach, O., and Horovitz, A. (1994) J. Mol. Biol., 243, 397–401.

    Article  PubMed  Google Scholar 

  28. Yifrach, O., and Horovitz, A. (1994) Biochemistry, 34, 5303–5308.

    Google Scholar 

  29. Hayer-Hartl, M. K., Martin, J., and Hartl, F. U. (1995) Science, 269, 836–841.

    PubMed  Google Scholar 

  30. Weissman, J. S., Hohl, C. M., Kovalenko, O., Kashi, Y., Chen, S. X., Braig, K., Saibil, H. R., Fenton, W. A., and Horwich, A. L. (1995) Cell, 83, 577–587.

    Article  PubMed  Google Scholar 

  31. Mayhew, M., Da Silva, A. C. R., Martin, J., Erdjument-bromage, H., Tempst, P., and Hartl, F. U. (1996) Nature, 379, 420–426.

    Article  PubMed  Google Scholar 

  32. Weissman, J. S., Rye, H. S., Fenton, W. A., Beechem, J. M., and Horwich, A. L. (1996) Cell, 84, 481–490.

    Article  PubMed  Google Scholar 

  33. Wang, J., and Boisvert, D. C. (2003) J. Mol. Biol., 327, 843-855.

  34. Sakikawa, G., Tagushi, H., Makino, Y., and Yoshida, M. (1999) J. Biol. Chem., 274, 21251–21256.

    Article  PubMed  Google Scholar 

  35. Ranson, N. A., Burston, S. G., and Clarke, A. R. (1997) J. Mol. Biol., 266, 656–664.

    Article  PubMed  Google Scholar 

  36. Yifrach, O., and Horovitz, A. (1995) Biochemistry, 34, 5303–5308.

    PubMed  Google Scholar 

  37. Yifrach, O., and Horovitz, A. (1996) J. Mol. Biol., 255, 356–361.

    Article  PubMed  Google Scholar 

  38. Ellis, R. J., and Hartl, F. U. (1999) Curr. Opin. Struct. Biol., 9, 102–110.

    Article  PubMed  Google Scholar 

  39. Saibil, H. R., and Ranson, N. A. (2002) Trends Biochem. Sci., 27, 627–632.

    Article  PubMed  Google Scholar 

  40. Ranson, N. A., Dunster, N. J., Burston, S. G., and Clarke, A. R. (1995) J. Mol. Biol., 250, 581–586.

    Article  PubMed  Google Scholar 

  41. Smith, K. E., and Fisher, M. T. (1995) J. Biol. Chem., 270, 21517–21523.

    Article  PubMed  Google Scholar 

  42. Taguchi, H., and Yoshida, M. (1995) FEBS Lett., 359, 195–198.

    Article  PubMed  Google Scholar 

  43. Peralta, D., Hartman, D. J., Hoogenraad, N. J., and Hoj, P. B. (1994) FEBS Lett., 339, 45–49.

    Article  PubMed  Google Scholar 

  44. Sparrer, H., Rutkat, K., and Buchner, J. (1997) Proc. Natl. Acad. Sci. USA, 94, 1096–1000.

    Article  PubMed  Google Scholar 

  45. Todd, M. J., Vitanen, P. V., and Lorimer, G. H. (1994) Science, 265, 659–666.

    PubMed  Google Scholar 

  46. Dill, K. A., and Chan, H. S. (1997) Nature Struct. Biol., 4, 10–19.

    Article  PubMed  Google Scholar 

  47. Weissman, J. S., and Kim, P. S. (1991) Science, 253, 1386-1393.

  48. Todd, M. J., Lorimer, G. H., and Thirumalai, D. (1996) Proc. Natl. Acad. Sci. USA, 93, 4030–4035.

    Article  PubMed  Google Scholar 

  49. Corrales, F. J., and Fersht, A. R. (1996) Proc. Natl. Acad. Sci. USA, 93, 4509–45112.

    Article  PubMed  Google Scholar 

  50. Goluoubinoff, P., Gatenby, A. A., and Lorimer, G. H. (1989) Nature, 337, 44–47.

    Article  PubMed  Google Scholar 

  51. Goluoubinoff, P., Cristeller, J. T., Gatenby, A. A., and Lorimer, G. H. (1989) Nature, 342, 884–889.

    Article  PubMed  Google Scholar 

  52. Walter, S., Lorimer, F. X., and Schmid, F. X. (1996) Proc. Natl. Acad. USA, 93, 9425–9430.

    Article  Google Scholar 

  53. Wang, J. D., and Weissman, J. S. (1999) Nature Struct.Biol., 6, 597–600.

    Article  PubMed  Google Scholar 

  54. Brinker, A., Pfeifer, G., Kerner, M. J., Naylor, D. J., Hartl, F. U., and Hayer-Hartl, M. (2001) Cell, 19, 223–233.

    Article  Google Scholar 

  55. Rye, H. S., Burston, S. G., Fenton, W. F., Beechem, J. M., Xu, Z., Sigler, P. B., and Horwich, A. L. (1997) Nature, 388, 792–798.

    Article  PubMed  Google Scholar 

  56. Hayer-Hartl, M. K., Weber, F., and Hartl, F. U. (1996) EMBO J., 15, 6111–6121.

    PubMed  Google Scholar 

  57. Wolynes, P. G., Onuchik, J. N., and Thirumalai, D. (1995) Science, 267, 1619–1620.

    PubMed  Google Scholar 

  58. Persson, M., Carlsson, U., and Bergenhem, N. (1997) FEBS Lett., 411, 43–47.

    Article  PubMed  Google Scholar 

  59. Coyle, J. E., Texter, F. L., Ashcroft, A. E., Masselos, D., Robinson, C. V., and Radford, S. E. (1999) Nature Struct.Biol., 6, 683–690.

    Article  PubMed  Google Scholar 

  60. Radford, S. E., and Dobson, C. M. (1995) Phil. Trans. R.Soc. Lond.B, 348, 17–25.

    Google Scholar 

  61. Miranker, Radford, S. E., Karplus, M., and Dobson, C. M. (1991) Nature, 349, 633–636.

    Article  PubMed  Google Scholar 

  62. Radford, S. E., Dobson, C. M., and Evans, P. A. (1992) Nature, 358, 302–307.

    Article  PubMed  Google Scholar 

  63. Matagne, A., Radford, S. E., and Dobson, C. M. (1997) J.Mol. Biolx., 267, 1068–1074.

    Article  Google Scholar 

  64. Ewalt, K. L., Hendrick, J. P., Houry, W. A., and Hartl, F. U. (1997) Cell, 90, 491–500.

    Article  PubMed  Google Scholar 

  65. Rothwarf, D. M., and Scheraga, H. A. (1996) Biochemistry, 35, 13797–13807.

    Article  PubMed  Google Scholar 

  66. Wildegger, G., and Kiefhaber, T. (1997) J. Mol. Biol., 270, 294–304.

    Article  PubMed  Google Scholar 

  67. Chan, H. S., and Dill, K. A. (1996) Proteins: Struct. Func.Genet., 24, 345–351.

    Article  Google Scholar 

  68. Lorimer, G. H. (1996) FASEB J., 10, 5–9.

    PubMed  Google Scholar 

  69. Rye, H. S., Roseman, A. M., Chen, S., Furtak, K., Fenton, W. A., Saibil, H. R., and Horwich, A. L. (1999) Cell, 97, 325–338.

    Article  PubMed  Google Scholar 

  70. Wang, J. D., Herman, C., Tipton, K. A., Gross, C. A., and Weissman, J. S. (2002) Cell, 111, 1027–1039.

    Article  PubMed  Google Scholar 

  71. Erbse, A. F., Dougan, D. A., and Bukau, B. (2003) Nature Struct. Biol., 10, 84–86.

    Article  PubMed  Google Scholar 

  72. Sternlicht, H., Farr, G. W., Sternlicht, M. L., Driscoll, J.K., Willison, K. R., and Yaffe, M. B. (1993) Proc. Natl.Acad. Sci. USA, 94, 9422–9426.

    Google Scholar 

  73. Willison, K. R., and Grantham, J. (2001) in Molecular Chaperones: Frontiers in Molecular Biology(Lund, P., ed.) Oxford University Press, Oxford, pp. 90–118.

    Google Scholar 

  74. Tian, G., Vainberg, I. E., Tap, W. D., Lewis, S. A., and Cowan, N. J. (1995) Nature, 375, 250–253.

    Article  PubMed  Google Scholar 

  75. Valpuesta, J. M., Martin-Benito, J., Gomez-Puertas, P., Carrascosa, J. L., and Willison, K. R. (2002) FEBS Lett., 529, 11–16.

    Article  PubMed  Google Scholar 

  76. Klumpp, M., Baumeister, W., and Essen, L.-O. (1997) Cell, 91, 263–270.

    Article  PubMed  Google Scholar 

  77. Ditzel, L., Lowe, J., Stock, D., Stetter, K.-O., Huber, H., Huber, R., and Steinbacher, S. (1998) Cell, 93, 125–138.

    Article  PubMed  Google Scholar 

  78. Horwich, A. L., and Saibil, H. R. (1998) Nature Struct.Biol., 5, 333–336.

    Article  PubMed  Google Scholar 

  79. Pappenberger, G., Wilsher, J. A., Roe, S. M., Counsell, D. J., Willison, K. R., and Pearl, L. H. (2002) J. Mol. Biol., 318, 1367–1379.

    Article  PubMed  Google Scholar 

  80. Nitsch, M., Walz, J., Typke, D., Klumpp, M., Essen, L.-O., and Baumeister, W. (1998) Nat. Struct. Biol., 5, 855–857.

    Article  PubMed  Google Scholar 

  81. Llorka, O., McCormack, E., Hynes, G. M., Grantham, J., Cordell, J., Carrascosa, J. L., Willison, K. R., Fernandez, J. J., and Valpuesta, J. M. (1999) Nature, 402, 693–696.

    Article  PubMed  Google Scholar 

  82. Llorka, O., Smyth, M. G., Carrascosa, J. L., Willison, K. R., Radermacher, M., Steinbacher, S., and Valpuesta, J. M. (1999) Nat. Struct. Biol., 6, 639–642.

    Article  PubMed  Google Scholar 

  83. Llorka, O., Benito-Martin, J., Ritko-Vonsovici, M., Grantham, J., Hynes, G. M., Willison, K. R., Carrascosa, J. L., and Valpuesta, J. M. (2000) EMBO J., 19, 5971–5979.

    Article  PubMed  Google Scholar 

  84. Llorca, O., Martin-Benito, J., Grantham, J., Ritco-Vonsovici, M., Willison, K. R., Carrascosa, J. L., and Valpuesta, J. M. (2001) EMBO J., 20, 4065–4075.

    Article  PubMed  Google Scholar 

  85. Meyer, A. S., Gillespie, J. R., Walther, D., Millet, J. S., Doniach, S., and Frydman, J. (2003) Cell, 113, 369–381.

    Article  PubMed  Google Scholar 

  86. Kusmierczyk, A. R., and Martin, J. (2001) FEBS Lett., 505, 343–347.

    Article  PubMed  Google Scholar 

  87. Willison, K. R. (1999) in Molecular Chaperones and Folding Catalysis(Bukau, B., ed.) Harwood Academic Publishers, pp. 555–571.

  88. Rommelaere, H., de Neve, M., Melki, R., Vandekerckhove, J., and Ampe, C. (1999) J. Biol. Chem., 38, 3246–3257.

    Google Scholar 

  89. Hunes, G. M., and Willison, K. R. (2000) J. Biol. Chem., 276, 18985–18994.

    Article  Google Scholar 

  90. Ritko-Vonsovici, M., and Willison, K. R. (2000) J. Mol.Biol., 304, 81–98.

    Article  PubMed  Google Scholar 

  91. Dobrzynski, J. K., Sternlicht, M. L., Peng, I., Farr, G. W., and Sternlicht, H. (2002) Biochemistry, 39, 3988–4003.

    Article  Google Scholar 

  92. Horovitz, A., Fridmann, Y., Kafri, G., and Yifrach, O. (2001) J. Struct. Biol., 135, 104–114.

    Article  PubMed  Google Scholar 

  93. Thulasiraman, V., Yang, C. F., and Frydman, J. (1999) EMBO J., 18, 85–95.

    Article  PubMed  Google Scholar 

  94. Frydman, J., Nimmesgern, E., Ohtsuka, K., and Hartl, F.U. (1994) Nature, 370, 111–117.

    Article  PubMed  Google Scholar 

  95. Frydman, J., and Hartl, F. U. (1996) Science, 272, 1497-1502.

  96. Netzer, W. J., and Hartl, F. U. (1997) Nature, 388, 343-349.

  97. McCallum, C. D., Do, H., Johnson, A. E., and Frydman, J. (2000) J. Cell. Biol., 149, 591–602.

    Article  PubMed  Google Scholar 

  98. Siegers, K., Waldmann, T., Leroux, M. R., Grein, K., Shevchenko, A., Schiebel, E., and Harll, F. U. (1999) EMBO J., 18, 75–84.

    Article  PubMed  Google Scholar 

  99. Geissler, S., Siegers, K., and Schiebel, E. (1998) EMBO J., 17, 952–966.

    Article  PubMed  Google Scholar 

  100. Vainberg, I. E., Lewis, S. A., Rommerlaere, H., Ampe, C., Vandekerckhove, J., Klein, H. L., and Cowan, N. J. (1998) Cell, 93, 863–873.

    Article  PubMed  Google Scholar 

  101. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A., and Chen, E. Y. (1983) Nucleic Acids Res., 11, 7911–7925.

    PubMed  Google Scholar 

  102. Power, S. D., Adams, R. M., and Wells, J. A. (1986) Proc.Natl. Acad. Sci. USA, 83, 3096–3100.

    PubMed  Google Scholar 

  103. Ikemura, H., Takagi, H., and Inouye, M. (1987) J. Biol.Chem., 262, 7859–7864.

    PubMed  Google Scholar 

  104. Bryan, P., Alexander, P., Strausberg, S., Schwarz, F., Wang, L., Gilliland, G., and Gallagher, D. T. (1992) Biochemistry, 31, 4937–4945.

    PubMed  Google Scholar 

  105. Zhu, X., Ohta, Y., Jordan, F., and Inouye, M. (1989) Nature, 339, 483–484.

    Article  PubMed  Google Scholar 

  106. Silen, J. L., and Agard, D. A. (1989) Nature, 341, 462–464.

    Article  PubMed  Google Scholar 

  107. Shinde, U., Li, Y., Chatterjee, S., and Inouye, M. (1993) Proc. Natl. Acad. Sci. USA, 90, 6924–6928.

    PubMed  Google Scholar 

  108. Shinde, U., and Inouye, M. (1993) Trends Biochem. Sci., 18, 442–446.

    Article  PubMed  Google Scholar 

  109. Ellis, J. R. (1998) Trends Biochem. Sci., 23, 43–45.

    Article  PubMed  Google Scholar 

  110. Bryan, P., Wang, L., Hoskins, J., Ruvinov, S., Strausberg, S., Alexander, P., Almog, O., Gilliland, G., and Gallagher, D. T. (1995) Biochemistry, 34, 10310–10318.

    PubMed  Google Scholar 

  111. Strausberg, S., Alexander, P., Wang, L., Schwarz, F., and Bryan, P. (1993) Biochemistry, 32, 8112–8119.

    PubMed  Google Scholar 

  112. Bryan, P. N. (2002) Chem. Rev., 102, 4805–4815.

    Article  PubMed  Google Scholar 

  113. Baker, D., and Agard, D. (1994) Biochemistry, 33, 7505-7509.

  114. Wang, L., Ruvinov, S., Strausberg, S., Gallagher, D. T., Gilliland, G., and Bryan, P. (1995) Biochemistry, 34, 15415–15420.

    PubMed  Google Scholar 

  115. Wang, L., Ruan, B., Ruvinov, S., and Bryan, P. N. (1998) Biochemistry, 37, 3165–3171.

    Article  PubMed  Google Scholar 

  116. Ruan, B., Hoskins, J., and Bryan, P. (1999) Biochemistry, 38, 8562–8571.

    Article  PubMed  Google Scholar 

  117. Levinthal, C. (1968) J. Chim. Phys., 65, 44–45.

    Google Scholar 

  118. Hobson, A. H., Buckley, C. M., Aamand, J. L., Jorgensen, S. T., Diderichsen, B., and McConnell, D. J. (1993) Proc.Natl. Acad. Sci. USA, 90, 5682–5686.

    PubMed  Google Scholar 

  119. El Khattabi, M., van Gelder, P., Bitter, W., and Tommassen, J. (2000) J. Biol. Chem., 275, 26885–26891.

    PubMed  Google Scholar 

  120. Young, J. C., Moarefi, I., and Hartl, F. U. (2001) J. Cell.Biol., 154, 267–273.

    Article  PubMed  Google Scholar 

  121. Obermann, W. M. J., Sondermann, H., Russo, A. A., Pavletich, N. P., and Hartl, F. U. (1998) J. Cell. Biol., 143, 901–910.

    Article  PubMed  Google Scholar 

  122. Panaretou, B. C., Prodromou, S. M., Roe, R., O'Brien, J. E., Ladbury, P. W., Piper, P. W., and Pearl, L. H. (1998) EMBO J., 17, 4829–4836.

    Article  PubMed  Google Scholar 

  123. Mayer, M. P., Nicilay, R., and Bukau, B. (2002) Mol. Cell, 10, 1255–1268.

    Article  PubMed  Google Scholar 

  124. Pearl, L. H., and Prodromou, S. (2001) Adv. Prot. Chem., 59, 157–186.

    Google Scholar 

  125. Shinde, U. P., Liu, J. J., and Inouye, M. (1997) Nature, 389, 520–522.

    Article  PubMed  Google Scholar 

  126. Shinde, U. P., and Inouye, M. (1999) J. Biol. Chem., 274, 15615–15621.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagradova, N.K. Protein Folding in the Cell: On the Mechanisms of Its Acceleration. Biochemistry (Moscow) 69, 830–843 (2004). https://doi.org/10.1023/B:BIRY.0000040214.43943.9a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRY.0000040214.43943.9a

Navigation