Skip to main content

Poly(ADP-ribose) Polymerase-1 Inhibits Strand-Displacement Synthesis of DNA Catalyzed by DNA Polymerase β


Poly(ADP-ribose) polymerase-1 (PARP-1), a eucaryotic nuclear DNA-binding protein that is activated by breaks in DNA chains, may be involved in the base excision repair (BER) because DNAs containing single-stranded gaps and breaks are intermediates of BER. The effect of PARP-1 on the DNA synthesis catalyzed in vitro by DNA polymerase β (pol β) was studied using analogs of DNA substrates produced during BER and imitating intermediates of the short patch and long patch subpathways of BER. Oligonucleotide duplexes of 34 bp that contained a mononucleotide gap or a single-strand break with tetrahydrofuran phosphate or phosphate at the 5′-end of the downstream oligonucleotide were taken as DNA substrates. The efficiency of DNA synthesis was determined at various ratios of polβ and PARP-1. The efficiency of gap filling was decreased in the presence of PARP-1, but strand-displacement DNA synthesis was inhibited significantly stronger, which seemed to be due to competition between PARP-1 and polβ for DNA. In the presence of NAD+ and single-strand breaks in DNA, PARP-1 catalyzes the synthesis of poly(ADP-ribose) covalently attached to the enzyme, and this automodification is thought to provide for dissociation of PARP-1 from DNA. The effect of PARP-1 automodification on inhibition of DNA synthesis was studied, and efficiency of mononucleotide gap filling was shown to be restored, but strand-displacement synthesis did not revert to the level observed in the absence of PARP-1. PARP-1 is suggested to regulate the interaction between pol β and DNA, in particular, via its own automodification.

This is a preview of subscription content, access via your institution.


  1. 1.

    Desmarais, Y., Menard, L., Lagueux, J., and Poirier, G. (1991) Biochim. Biophys. Acta, 1078, 179-186.

    Google Scholar 

  2. 2.

    Shall, S., and de Murcia, G. (2000) Mutat. Res., 460, 1-15.

    Google Scholar 

  3. 3.

    Sastry, S. S., Buki, K. G., and Kun, E. (1989) Biochemistry, 28, 5670-5680.

    Google Scholar 

  4. 4.

    Ikejima, M., Noguchi, S., Yamashita, R., Ogura, T., Sugimura, T., Gill, D. M., and Miwa, M. (1990) J. Biol. Chem., 295, 21907-21913.

    Google Scholar 

  5. 5.

    Althaus, F. R., Kleczkowska, H. E., Malanga, M., Muntener, C. R., Pleschke, J. M., Ebner, M., and Auer, B. (1999) Mol. Cell Biochem., 193, 5-11.

    Google Scholar 

  6. 6.

    D'Amours, D., Desnoyers, S., and Poirier, G. G. (1999) Biochem. J., 342, 249-268.

    Google Scholar 

  7. 7.

    Chatterjee, S., Berger, S. J., and Berger, N. A. (1999) Mol. Cell Biochem., 193, 23-30.

    Google Scholar 

  8. 8.

    Simbulan-Rosenthal, C. M., Rosenthal, D. S., Boulares, A. H., Hickey, R. J., Malkas, L. H., Coll, J. M., and Smulson, M. E. (1998) Biochemistry, 37, 9363-9370.

    Google Scholar 

  9. 9.

    Dantzer, F., Nasheuer, H.-P., Vonesch, J.-L., de Murcia, G., and Ménissier-de Murcia, J. (1998) Nucleic Acids Res., 26, 1891-1898.

    Google Scholar 

  10. 10.

    _ Lindahl, T., Satoh, M. S., Poirier, G. G., and Klungland, A. (1995) Trends Biochem. Sci., 20, 405-411.

    Google Scholar 

  11. 11.

    Saton, M. S., and Lindahl, T. (1992) Nature, 356, 356-358.

    Google Scholar 

  12. 12.

    Oei, S. L., Griesenbeck, J., Ziegler, M., and Schweiger, M. (1998) Biochemistry, 37, 1465-1469.

    Google Scholar 

  13. 13.

    Vispe, S., Yung, T. M. C., Ritchot, J., Serizawa, H., and Satoh, M. S. (2000) Proc. Natl. Acad. Sci. USA, 97, 9886-9891.

    Google Scholar 

  14. 14.

    Halappanavar, S. S., le Rhun, Y., Mounir, S., Martins, L. M., Huoti, J., Earnshaw, W. C., Girish, M., and Shah, G. M. (1999) J. Biol. Chem., 274, 37097-37104.

    Google Scholar 

  15. 15.

    De Murcia, J., Me, N., Niedergang, C., Trucco, C., Ricoul, M., Dutrillaux, B., Mark, M. F., Oliver, J., Masson, M., Dierich, A., Lemeur, M., Walzinger, C., Chambon, P., and de Murcia, G. (1997) Proc. Natl. Acad. Sci. USA, 94, 7303-7307.

    Google Scholar 

  16. 16.

    Lindahl, T. (2000) Mutat. Res., 462, 129-135.

    Google Scholar 

  17. 17.

    Frosina, G., Fortini, P., Rossit, O., Raspaglion, G., Cox, L. S., Lane, D. P., Abbondanolo, A., and Dogliotti, E. (1996) J. Biol. Chem., 271, 9573-9578.

    Google Scholar 

  18. 18.

    Matsumoto, Y., and Kim, K. (1995) Science, 269, 699-702.

    Google Scholar 

  19. 19.

    Klungland, A., and Lindahl, T. (1997) EMBO J., 16, 3341-3348.

    Google Scholar 

  20. 20.

    Matsumoto, Y., Kim, K., and Bogenhagen, D. F. (1994) Mol. Cell Biol., 14, 6187-6197.

    Google Scholar 

  21. 21.

    Podlutsky, A. J., Dianova, I. I., Podust, V. N., Bohr, V. A., and Dianov, G. L. (2001) EMBO J., 20, 1477-1482.

    Google Scholar 

  22. 22.

    Vodenicharov, M. D., Sallmann, F. R., Satoh, M. S., and Poirier, G. G. (2000) Nucleic Acids Res., 28, 3887-3896.

    Google Scholar 

  23. 23.

    Sanderson, R. J., and Lindahl, T. (2002) DNA Repair, 1, 547-558.

    Google Scholar 

  24. 24.

    Trucco, C., Oliver, F. J., de Murcia, G., and Menissier-de Murcia, J. (1998) Nucleic Acids Res., 26, 2644-2649.

    Google Scholar 

  25. 25.

    Dantzer, F., Schreiber, V., Niedergant, C., Trusso, C., Flatter, E., de la Rubia, G., Oliver, J., Rolli, V., Menissier-de Murcia, J., and de Murcia, G. (1999) Biochimie, 81, 69-75.

    Google Scholar 

  26. 26.

    Dantzer, F., de la Rubia, G, Menissier-de Murcia, J., Hostomsky, Z., de Murcia, G., and Schreiber, V. (2000) Biochemistry, 39, 7559-7569.

    Google Scholar 

  27. 27.

    Caldecott, K. W., Aoufouchi, S., Johnson, P., and Shall, S. (1996) Nucleic Acids Res., 24, 4387-4394.

    Google Scholar 

  28. 28.

    Lavrik, O. I., Prasad, R., Sobol, R. W., Horton, J. K., Ackerman, E. J., and Wilson, S. H. (2001) J. Biol. Chem., 276, 25541-25548.

    Google Scholar 

  29. 29.

    Prasad, R., Lavrik, O. I., Kim, S.-J., Kedar, P., Yang, X.-P., van de Berg, B. J., and Wilson, S. H. (2001) J. Biol. Chem., 276, 32411-32414.

    Google Scholar 

  30. 30.

    Protocols and Applications Guide Promega (1991), pp. 150-152.

  31. 31.

    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.

    Google Scholar 

  32. 32.

    Drachkova, I. A., Petruseva, I. O., Safronov, I. V., Zakharenko, A. L., Shishkin, G. V., Lavrik, O. I., and Khodyreva, S. N. (2001) Bioorg. Khim., 27, 197-204.

    Google Scholar 

  33. 33.

    Laemmli, U. K. (1970) Nature, 227, 680-685.

    Google Scholar 

  34. 34.

    Griesenbeek, J., Li Oei, S., Mayer-Kuckuk, P., Ziegler, M., Bushlow, G., and Schweiger, M. (1997) Biochemistry, 36, 7297-7304.

    Google Scholar 

  35. 35.

    Ohashi, Y., Itaya, A., Tanaka, Y., Yashihara, K., Kamiya, T., and Matsukage, A. (1986) Biochem. Biophys. Res. Commun., 140, 666-673.

    Google Scholar 

  36. 36.

    Sobol, R. W., Horton, J. K., Kunh, R., Gu, H., Singhal, R. K., Prasad, R., Rajewsky, K., and Wilson, S. H. (1996) Nature, 379, 183-186.

    Google Scholar 

  37. 37.

    Fortini, P., Pascucci, B., Parlanti, E., Sobol, R. W., Wilson, S. H., and Dogliotti, E. (1998) Biochemistry, 37, 3575-3580.

    Google Scholar 

  38. 38.

    Chagovetz, A. M., Sweasy, J. B., and Preston, B. D. (1997) J. Biol. Chem., 44, 27501-27504.

    Google Scholar 

  39. 39.

    Singhal, R. K., and Wilson, S. H. (1993) J. Biol. Chem., 268, 15906-15911.

    Google Scholar 

  40. 40.

    Kunkel, T. A. (1985) J. Biol. Chem., 260, 12866-12874.

    Google Scholar 

  41. 41.

    Kubota, Y., Nash, R. A., Klungland, A., Schar, P., Barnes, D. E., and Lindahl, T. (1996) EMBO J., 15, 6662-6670.

    Google Scholar 

  42. 42.

    Sukhanova, M. V., Lavrik, O. I., Safronov, I. V., and Khodyreva, S. N. (2002) The Third Int. Conf. on Bioinformatics of Genome Regulation and Structure, IC&G, Novosibirsk, pp. 22-24.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. I. Lavrik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sukhanova, M.V., Khodyreva, S.N. & Lavrik, O.I. Poly(ADP-ribose) Polymerase-1 Inhibits Strand-Displacement Synthesis of DNA Catalyzed by DNA Polymerase β. Biochemistry (Moscow) 69, 558–568 (2004).

Download citation

  • poly(ADP-ribose) polymerase-1
  • DNA polymerase β
  • base excision repair
  • poly(ADP-ribosyl)ation