Skip to main content
Log in

Mechanism of Perfluoroalkyl Halide Toxicity: Catalysis of Perfluoroalkylation by Reduced Forms of Cobalamin (Vitamin B12)

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Perfluoroalkyl halides (PFHs) are synthetic products widely used in various fields. Perfluorooctyl bromide (PFB) is used in medicine as a component of blood substitutes and for artificial lung ventilation. In both cases, it is considered a completely inert compound acting as a solvent for oxygen. However, there are many reports of PFH-induced intoxication, including lethal cases. Mechanisms underlying toxic effects of this compound remain unknown. In this study, we demonstrate that the reduced form of cobalamin (vitamin B12) typical for B12-dependent enzymes can catalyze the reactions of perfluoroalkylation, aromatic substitution, or addition by double bonds. Synthesis of perfluoro derivatives from PFHs during catalysis by cob(I)alamin-like super nucleophiles is a new possible mechanism responsible for in vivo formation of highly toxic compounds from “chemically inert” substances widely used in medicine. Catalytic perfluoroalkylation might possibly contribute to nitric oxide depletion and modulation of activity of guanylate cyclase, cytochromes, NO-synthases, and other heme-containing proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ivanitsky, G. R. (2001) Biofizika, 46, 5-33.

    Google Scholar 

  2. Jahr, J. S., Nesargi, S. B., Lewis, K., and Johnson, C. (2002) Am. J. Ther., 9, 437-443.

    Google Scholar 

  3. Squires, J. E. (2002) Science, 295, 1002-1005.

    Google Scholar 

  4. Smith, D. J., Kornbrust, E. S., and Lane, T. A. (1994) Artif. Cells. Blood. Substit. Immobil. Biotechnol., 22, 1215-1221.

    Google Scholar 

  5. Tsyganova, V. G., Popov, V. I., Rogachevsky, V. V., Zargarova, T. A., Turobov, T. A., and Ivanitsky, G. R. (2000) Dokl. Ros. Akad. Nauk, 375, 125-129.

    Google Scholar 

  6. Miller, T. F., Milestone, B., Stern, R., Shaffer, T. H., and Wolfson, M. R. (2001) J. Appl. Physiol., 90, 839-849.

    Google Scholar 

  7. Multz, A. S. (2000) Respir. Care Clin. N. Am., 6, 645-657.

    Google Scholar 

  8. Ricard, J. D., and Lemaire, F. (2001) Curr. Opin. Crit. Care, 7, 8-14.

    Google Scholar 

  9. Reickert, C., Pranikoff, T., Overbeck, M., Kazerooni, E., Massey, K., Bartlett, R., and Hirschl, R. (2001) Chest, 119, 515-522.

    Google Scholar 

  10. Kaufman, J. D., Silverstein, M. A., and Moure-Eraso, R. (1994) Am. J. Ind. Med., 25, 731-735.

    Google Scholar 

  11. Fitzgerald, R. L., Fishel, C. E., and Bush, L. L. (1993) J. Forens. Sci., 38, 477-483.

    Google Scholar 

  12. Lerman, Y., Winkler, E., Tirosh, M. S., Danon, Y., and Almog, S. (1991) Hum. Exp. Toxicol., 10, 125-128.

    Google Scholar 

  13. Calkins, D. S., Degioanni, J. J., Tan, M. N., Davis, J. R., and Pierson, D. L. (1993) Fundam. Appl. Toxicol., 20, 240-247.

    Google Scholar 

  14. Lam, C. W., Weir, F. W., Williams-Cavender, K., Tan, M. N., Galen, T. J., and Pierson, D. L. (1993) Fundam. Appl. Toxicol., 20, 231-239.

    Google Scholar 

  15. Sjogren, B., Gunnare, S., and Sandler, H. (2002) Scand. J. Work Environ. Health, 28, 205-207.

    Google Scholar 

  16. Nakstad, B., Wolfson, M. K., Shaffer, T. H., Kahler, H., Lindemann, R., Fugelseth, D., and Lyberg, T. (2001) Crit. Care Med., 29, 1731-1737.

    Google Scholar 

  17. Fernandez, R., Sarma, R., Younkin, V. E., Hirshl, R. B., Ward, P. A., and Yonnger, J. C. (2001) J. Appl. Physiol., 91, 1941-1947.

    Google Scholar 

  18. Obraztsov, V. V., Neslund, G. G., Kornbrust, E. S., Flaim, S. F., and Woods, C. M. (2000) Am. J. Physiol. Lung. Cell. Mol. Physiol., 278, L1018-1024.

    Google Scholar 

  19. Gordin, V. A., and Nedospasov, A. A. (1998) FEBS Lett., 424, 239-242.

    Google Scholar 

  20. Liu, X., Miller, M. J. S., Joshi, M. S., Thomas, D. D., and Lancaster, J. R., Jr. (1998) Proc. Natl. Acad. Sci. USA, 95, 2175-2179.

    Google Scholar 

  21. Beda, N. V., and Suntsova, T. P. (1999) FEBS Lett., 453, 229-235.

    Google Scholar 

  22. Nedospasov, A. A. (2002) J. Biochem. Mol. Toxicol., 16, 109-120.

    Google Scholar 

  23. Huang, X. T., and Chen, Q. Y. (2001) J. Org. Chem., 66, 4651-4656.

    Google Scholar 

  24. Hu, C. M., and Qiu, Y. L. (1992) J. Org. Chem., 57, 3339-3342.

    Google Scholar 

  25. Frey, M. (2002) Chembiochem., 3, 153-160.

    Google Scholar 

  26. Olson, J. W., Mehta, N. S., and Maier, R. J. (2001) Mol. Microbiol., 39, 176-182.

    Google Scholar 

  27. Doukov, T. I., Iverson, T. M., Seravalli, J., Ragsdale, S. W., and Drennan, C. L. (2002) Science, 298, 567-572.

    Google Scholar 

  28. Kobayashi, M., and Shimizu, S. (1999) Eur. J. Biochem., 261, 1-9.

    Google Scholar 

  29. Marsh, E. N. (1999) Essays Biochem., 34, 139-154.

    Google Scholar 

  30. Marsh, E. N., and Drennan, C. L. (2001) Curr. Opin. Chem. Biol., 5, 499-505.

    Google Scholar 

  31. Fonseca, M. V., and Escalante-Semerena, J. C. (2000) J. Bacteriol., 182, 4304-4309.

    Google Scholar 

  32. Trushkin, A. M., Kazantsev, A. G., Kuznetsov, N. V., Yahimovich, A. D., Moguchaya, G. Yu., Rodina, E. V., Gridneva, N. A., Sharina, I. G., and Nedospasov, A. A. (1994) Biochemistry (Moscow), 59, 1127-1138.

    Google Scholar 

  33. Kazantsev, A. G., Kuznetsov, N. V., Yahimovich, A. D., Sharina, I. G., Nezavibatko, I. G., and Nedospasov, A. A. (1994) Biochemistry (Moscow), 59, 1139-1144.

    Google Scholar 

  34. Engberts, J. B. F. N. (1992) Pure Appl. Chem., 64, 1653-1660.

    Google Scholar 

  35. Tereshina, E. V., Ustyuzhanina, N., Doronina, N. N., Aprosin, Yu. D., and Afonin, N. I. (1986) Gematol. Transfuziol., 31, 45-49.

    Google Scholar 

  36. Tereshina, E. V., and Doronina, N. N. (1990) Khim. Farm. Zh., 24, 16-18.

    Google Scholar 

  37. Tereshina, E. V., and Afonin, N. I. (1994) Artif. Cells Blood Subst. Immob. Biotech., 22, 334-340.

    Google Scholar 

  38. Vakhtin, A. B., Baklanov, A. V., and Petrov, A. K. (1992) Chem. Phys., 167, 1-15.

    Google Scholar 

  39. Beilstein, EIV, 1, 99.

  40. Ludovici, K., Nanmann, D., Siegemund, G., Tyrra, W., Varbelow, H._G., and Wrubel, H. (1995) J. Fluorine Chem., 73, 273-274.

    Google Scholar 

  41. Dinwoodie, A. H., and Haszeldine, R. N. (1965) J. Chem. Soc., 1965, 1675-1681.

    Google Scholar 

  42. Khatsenko, O. (1998) Biochemistry (Moscow) 63, 833-839.

    Google Scholar 

  43. Gow, A. J., and Stamler, J. S. (1998) Nature, 391, 169-173.

    Google Scholar 

  44. Gladwin, M. T., Ognibene, F. P., Pannell, L. K., Nichols, J. S., Pease-Fye, M. E., Shelhamer, J. H., and Schechter, A. N. (2000) Proc. Natl. Acad. Sci. USA, 97, 9943-9948.

    Google Scholar 

  45. Luchsinger, B. P., Rich, E. N., Gow, A. J., Williams, E. M., Stamler, J. S., and Singel, D. J. (2003) Proc. Natl. Acad. Sci. USA, 100, 461-466.

    Google Scholar 

  46. Nedospasov, A. A. (1998) Biochemistry (Moscow), 63, 744-765.

    Google Scholar 

  47. Lucas, K. A., Pitari, G. M., Kazerounian, S., Ruiz-Stewart, I., Park, J., Schulz, S., Chepenik, K. P., and Waldman, S. A. (2000) Pharmacol. Rev., 52, 375-414.

    Google Scholar 

  48. Martin, E., Lee, Y. C., and Murad, F. (2001) Proc. Natl. Acad. Sci. USA, 98, 12938-12942.

    Google Scholar 

  49. Levonen, A. L., Patel, R. P., Brookes, P., Go, Y. M., Jo, H., Parthasarathy, S., Anderson, P. G., and Darley-Usmar, V. M. (2001) Antioxid. Redox. Signal., 3, 215-229.

    Google Scholar 

  50. Russwurm, M., and Koesling, D. (2002) Mol. Cell. Biochem., 230, 159-164.

    Google Scholar 

  51. Severina, I. S. (2002) Vopr. Med. Khim., 48, 4-30.

    Google Scholar 

  52. Mulsch, A., Bara, A., Mordvintcev, P., Vanin, A., and Busse, R. (1995) Br. J. Pharmacol., 116, 2743-2749.

    Google Scholar 

  53. Nishida, C. R., and Ortiz de Montellano, P. R. (1999) J. Biol. Chem., 274, 14692-14698.

    Google Scholar 

  54. Gorren, A. C., and Mayer, B. (2002) Curr. Drug Metab., 3, 133-157.

    Google Scholar 

  55. Sarti, P., Giuffre, A., Barone, M. C., Forte, E., Mastronicola, D., and Brunori, M. (2003) Free Radic. Biol. Med., 34, 509-520.

    Google Scholar 

  56. Vasquez-Vivar, J., Hogg, N., Martasek, P., Karoui, H., Pritchard, K. A., Jr., and Kalyanaraman, B. (1999) J. Biol. Chem., 274, 26736-26742.

    Google Scholar 

  57. Rosen, G. M., Tsai. P., Weaver, J., Porasuphatana, S., Roman, L. J., Starkov, A. A., Fiskum, G., and Pou, S. (2002) J. Biol. Chem., 277, 40275-40280.

    Google Scholar 

  58. Panaretakis, T., Shabalina, I. G., Grander, D., Shoshan, M. C., and DePierre, J. W. (2001) Toxicol. Appl. Pharmacol., 173, 56-64.

    Google Scholar 

  59. Chen, L. C., Tatum, V., Glauert, H. P., and Chow, C. K. (2001) J. Biochem. Mol. Toxicol., 15, 107-113.

    Google Scholar 

  60. Biegel, L. B., Hurtt, M. E., Frame, S. R., O'Connor, J. C., and Cook, J. C. (2001) Toxicol. Sci., 60, 44-55.

    Google Scholar 

  61. Ellis, D. A., Mabury, S. A., Martin, J. W., and Muir, D. C. G. (2001) Nature, 412, 321-324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beda, N.V., Nedospasov, A.A. Mechanism of Perfluoroalkyl Halide Toxicity: Catalysis of Perfluoroalkylation by Reduced Forms of Cobalamin (Vitamin B12). Biochemistry (Moscow) 68, 1369–1375 (2003). https://doi.org/10.1023/B:BIRY.0000011659.02192.04

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRY.0000011659.02192.04

Navigation