Skip to main content
Log in

Proton Pumping in Growing Part of Maize Root: Its Correlation with 14-3-3 Protein Content and Changes in Response to Osmotic Stress

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The spatial pattern of mitotic activity, cell elongation, rate of H+ fluxes, and 14-3-3 protein content were determined in Zea mays roots. We found that the regions along the apical part of the growing root conversely differ in their proton pumping activity. Higher rate of H+ efflux coincides with higher growth rate and correlates with increased 14-3-3 protein content in membrane preparations. The segment consisting of the root cap and the apical part of the meristem exerts net inward proton pumping, which can be inverted under fusicoccin treatment or osmotic stress. In the latter case, this inversion is accompanied by accumulation of 14-3-3 protein in plasma membranes. The results obtained highlight 14-3-3 protein as an obvious candidate for the fine regulation of plasma membrane H+-ATPase in root apex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hager, A., Menzel, H., and Krauss, A. (1971) Planta, 100, 47-75.

    Google Scholar 

  2. Evans, M. L. (1976) Plant Physiol., 58, 599-601.

    Google Scholar 

  3. Pilet, P. E., Versel, J. M., and Mayor, G. (1983) Planta, 158, 398-402.

    Google Scholar 

  4. Zieschang, H. E., Kohler, K., and Sievers, A. (1993) Planta, 190, 546-554.

    Google Scholar 

  5. Peters, W. S., and Felle, H. H. (1999) Plant Physiol., 121, 905-912.

    Google Scholar 

  6. Palmgren, M. G. (1998) Adv. Bot. Res., 28, 1-70.

    Google Scholar 

  7. Morsomme, P., and Boutry, M. (2000) Biochim. Biophys. Acta, 1465, 1-16.

    Google Scholar 

  8. Sze, H., Li, X., and Palmgren, M. G. (1999) Plant Cell, 11, 677-689.

    Google Scholar 

  9. Felle, H. H. (1998) J. Exp. Bot., 49, 987-995.

    Google Scholar 

  10. Parets-Soler, A., Pardo, J. M., and Serrano, R. (1990) Plant Physiol., 93, 1654-1658.

    Google Scholar 

  11. Jahn, T., Baluska, F., Michalke, W., Harper, J. F., and Volkmann, D. (1998) Physiol. Plant., 104, 311-316.

    Google Scholar 

  12. Stenz, H.-G., Heumann, H.-G., and Weisenseel, M. H. (1993) Naturwissenschaften, 80, 317-319.

    Google Scholar 

  13. Aitken, A. (1996) Trends Cell Biol., 6, 341-347.

    Google Scholar 

  14. Oecking, C., and Hagemann, K. (1999) Planta, 207, 480-482.

    Google Scholar 

  15. Jahn, T., Fuglsang, A. T., Olsson, A., Bruntrup, I. M., Collinge, D. B., Volkmann, D., Sommarin, M., Palmgren M. G., and Larsson, C. (1997) Plant Cell, 9, 1805-1814.

    Google Scholar 

  16. Svennelid, F., Olsson, A., Piotrowski, M., Rosenquist, M., Ottman, C., Larsson, C., Oecking, C., and Sommarin, M. (1999) Plant Cell, 11, 2379-2392.

    Google Scholar 

  17. Jelich-Ottmann, C., Weiler, E. W., and Oecking, C. (2001) J. Biol. Chem., 276, 39852-39857.

    Google Scholar 

  18. Chelysheva, V. V., Smolenskaya, I. N., Trofimova, M. S., Babakov, A. V., and Muromtsev, G. S. (1999) FEBS Lett., 456, 22-26.

    Google Scholar 

  19. Babakov, A. V., Chelysheva, V. V., Klychnikov, O. I., Zorinyanz, S. E., Trofimova, M. S., and De Boe, A. H. (2000) Planta, 211, 446-448.

    Google Scholar 

  20. Emi, T., Kinoshita, T., and Shimazaki, K. (2001) Plant Physiol., 125, 1115-1125.

    Google Scholar 

  21. Ivanov, V. B., and Maximov, V. N. (1999) Russ. J. Plant Physiol., 46, 73-82.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall R. J. (1951) J. Biol. Chem., 193, 265-275.

    Google Scholar 

  23. Larsson, C., Sommarin, M., and Widell, S. (1994) Meth. Enzymol., 226, 451-469.

    Google Scholar 

  24. Serrano, R. (1990) in The Plant Plasma Membrane (Larsson, C., and Moller, I. M., eds.) Springer-Verlag, Berlin, pp. 127-153.

    Google Scholar 

  25. Serrano, R. (1996) Int. Rev. Cytol., 165, 1-52.

    Google Scholar 

  26. Erickson, R. O., and Sax, K. B. (1956) Proc. Amer. Phil. Soc., 100, 499-514.

    Google Scholar 

  27. Sentenac, H., and Grignon, C. (1987) Plant Physiol., 84, 1367-1372.

    Google Scholar 

  28. Feldman, L. (1984) Annu. Rev. Plant Physiol., 35, 223-242.

    Google Scholar 

  29. Fasano, J. M., Swanson, S. J., Blancaflor, E. B., Dowd, P. E., Kao, T.-H., and Gilroy, S. (2001) Plant Cell, 13, 907-921.

    Google Scholar 

  30. Korthout, H. A. A. J., and De Boe, A. H. (1998) Plant Physiol. Biochem., 36, 357-365.

    Google Scholar 

  31. Zeleneva, I. V. (1978) Soviet J. Devel. Biol., 8, 244-250.

    Google Scholar 

  32. Camoni, L., Visconti, S., Marra, M., and Aducci, P. (2001) J. Biol. Chem., 276, 31709-31712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanko, A.V., Mesenko, M.M., Klychnikov, O.I. et al. Proton Pumping in Growing Part of Maize Root: Its Correlation with 14-3-3 Protein Content and Changes in Response to Osmotic Stress. Biochemistry (Moscow) 68, 1320–1326 (2003). https://doi.org/10.1023/B:BIRY.0000011653.46422.c3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRY.0000011653.46422.c3

Navigation