Skip to main content
Log in

The Tumor Cell and Telomerase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Imbalanced activity of the mechanism that controls cell division is a prerequisite for malignant transformation of a normal cell. The present review considers this multi-step mechanism, which is usually called the G1-S checkpoint. Besides, tumor cells are characterized by the presence of telomerase, an enzyme responsible for restoration of chromosome ends after replication and thus providing for unlimited cell division. The main point of the present article is to find out whether the activation of telomerase is controlled by the G1-S checkpoint or does not depend on it. The principal components of the G1-S checkpoint, such as cyclin-dependent kinases, retinoblastoma and E2F proteins, control the activity of telomerase. In their turn they accumulate and transmit signals from various sources inside and outside the cell. Thus, various changes in tumor cells can activate telomerase through the G1-S checkpoint. Such are the suggested effects on telomerase of Myc, p53, Waf1, protein kinases B and C, Wnt5A, TGFβ, WT1, and estrogens. However, Myc, p53, WT1, estrogens, protein kinases B and C, and TGFβ can also directly influence telomerase independently of the G1-S checkpoint mechanism. Moreover, in 30% of human tumors the gene of the key subunit of telomerase (hTERT) is amplified, possibly due to chromosomal rearrangements unassociated with the activity of the G1-S checkpoint. Thus, telomerase seems to be activated not by a single agent but due to combined action of various factors, both with involvement of the G1-S checkpoint mechanism and independently of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abott, A. A. (2002) Nature, 416, 470-474.

    Google Scholar 

  2. Kim, N. W., Piatyszek, M. A., Prowse, K. R., and Harley, C. B. (1994) Science, 266, 2011-2015.

    Google Scholar 

  3. Krug, U., Ganser, A., and Koeffler, H. P. (2002) Oncogene, 21, 3475-3495.

    Google Scholar 

  4. Levens, D. (2002) PNAS, 99, 61-71.

    Google Scholar 

  5. Steinman, R. A. (2002) Oncogene, 21, 3403-3413.

    Google Scholar 

  6. Zajac-Kaye, M. (2001) Lung Cancer, 34, S43-S46.

    Google Scholar 

  7. Sidransky, D. (1996) Ann. Rev. Med., 47, 285-301.

    Google Scholar 

  8. Tanappfel, A., and Wittekind, C. (2002) Virchows Arch., 440, 345-352.

    Google Scholar 

  9. Adjei, A. A. (2001) J. Natl. Cancer Inst., 93, 1062-1074.

    Google Scholar 

  10. Agarwal, M. L., Taylor, W. R., Chernov, M. V., Chernova, O. B., and Stark, G. R. (1998) J. Biol. Chem., 273, 1-4.

    Google Scholar 

  11. Kiselev, L. M., Lutsenko, S. V., and Severin, S. E. (2002) Vopr. Biol. Med. Farm. Khim., 3, 3-9.

    Google Scholar 

  12. Coussens, L. M., Fingleton, B., and Matrisian, L. M. (2002) Science, 295, 2387-2392.

    Google Scholar 

  13. Shchelkunov, S. N. (2001) Soros Obrazovat. Zh., 7, 26-30.

    Google Scholar 

  14. Peltomaki, P. (2001) Hum. Mol. Genet., 10, 735-740.

    Google Scholar 

  15. Bortner, C. D., and Cidlowski, J. A. (2002) Ann. Rev. Pharmac. Toxicol., 42, 259-281.

    Google Scholar 

  16. Johnstone, R. W., Ruefli, A. A., and Lowe, S. W. (2002) Cell, 108, 153-164.

    Google Scholar 

  17. Delihas, N. (2001) Curr. Drug Targets, 2, 167-180.

    Google Scholar 

  18. Gross, A. (2001) Life, 52, 231-236.

    Google Scholar 

  19. Evan, G., and Littlewood, T. (1998) Science, 281, 1317-1321.

    Google Scholar 

  20. Olovnikov, A. M. (1971) Dokl. Akad. Nauk SSSR, 201, 1496-1499.

    Google Scholar 

  21. Marx, J. (2002) Science, 295, 2348-2351.

    Google Scholar 

  22. Shay, J. W., Zou, Y., Hiyama, E., and Wright, W. E. (2001) Hum. Mol. Genet., 10, 677-685.

    Google Scholar 

  23. Bryan, T. M., and Cech, T. R. (1999) Curr. Opin. Cell. Biol., 11, 318-324.

    Google Scholar 

  24. Reddel, R. R. (1998) Bioessays, 20, 977-984.

    Google Scholar 

  25. Dandjinou, A. T., Dionne, I., Gravel, S., and LeBel, C. (1999) Histol. Histopathol., 14, 517-524.

    Google Scholar 

  26. Zhang, A., Zheng, C., Lindvall, C., Hou, M., Ekedahl, J., Lewensohn, R., Yan, Z., Yang, X., Henriksson, M., Blennow, E., Nordenskjold, M., Zetterberg, A., Bjorkholm, M., Gruber, A., and Xu, D. (2000) Cancer Res., 60, 6230-6235.

    Google Scholar 

  27. Davis, A. J., and Siu, L. L. (2000) Cancer Invest., 18, 269-277.

    Google Scholar 

  28. Dhaene, K., Marck, E. V., and Parwaresch, A. J. (2000) Virchows Arch., 437, 1-16.

    Google Scholar 

  29. Beattie, T. L., Zhou, W., Robinson, M. O., and Harrington, L. (1998) Curr. Biol., 8, 177-180.

    Google Scholar 

  30. Price, C. M. (1999) Curr. Opin. Genet. Develop., 9, 218-224.

    Google Scholar 

  31. Weinrich, S. L., Pruzan, R., Ma, L., Ouellette, M., Tesmer, V. M., Holt, S. E., Bodnar, A. G., Lichtsteiner, S., Kim, N. W., and Trager, J. B. (1997) Nat. Genet., 17, 498-502.

    Google Scholar 

  32. Forsyth, N. R., Wright, W. E., and Shay, J. W. (2002) Differentiation, 69, 188-197.

    Google Scholar 

  33. Zhao, J.-Q., Glasspool, R. M., and Hoare, S. F. (2000) Neoplasia, 2, 531-539.

    Google Scholar 

  34. Nakamura, T. M., Morin, G. B., Chapman, K. B., Weinrich, S. L., and Andrews, W. H. (1997) Science, 277, 955-959.

    Google Scholar 

  35. Oulton, R., and Harrington, L. (2000) Curr. Opin. Oncol., 12, 74-81.

    Google Scholar 

  36. Feng, J., Funk, W. D., Wang, S. S., Weinrich, S. L., and Avillio, A. A. (1995) Science, 269, 1236-1241.

    Google Scholar 

  37. Yi, X., Tesmer, V. M., Savre-Train, I., Shay, J. W., and Wright, W. E. (1999) Mol. Cell. Biol., 19, 3989-3997.

    Google Scholar 

  38. Oh, S., Song, Y.-H., Kim, U.-J., Yim, J., and Kim, T. K. (1999) Biochem. Biophys. Res. Commun., 263, 361-365.

    Google Scholar 

  39. Oh, S., Song, Y., Yim, J., and Kim, T. K. (1999) J. Biol. Chem., 274, 37473-37478.

    Google Scholar 

  40. Ulaner, G. A., Hu, J.-F., Vu, T. H., Oruganti, H., Giudice, L. C., and Hoffman, A. R. (2000) Int. J. Cancer, 85, 330-335.

    Google Scholar 

  41. Yi, X., White, D. M., Aisner, D. L., Baur, J. A., Wright, W. E., and Shay, J. W. (2000) Neoplasia, 2, 433-440.

    Google Scholar 

  42. Liu, J.-P. (1999) FASEB J., 13, 2091-2104.

    Google Scholar 

  43. Minamino, T., Mitsialis, S. A., and Kourembanas, S. (2001) Mol. Cell. Biol., 21, 3336-3342.

    Google Scholar 

  44. Crowe, D. L., and Nguyen, D. C. (2001) Biochim. Biophys. Acta, 1518, 1-6.

    Google Scholar 

  45. Crowe, D. L., Nguyen, D. C., Tsang, K. J., and Kyo, S. (2001) Nucleic Acids Res., 29, 2789-2794.

    Google Scholar 

  46. Alitalo, K., Koskinen, P., Makela, T. P., Saksela, K., Sistonen, L., and Winquist, R. (1997) Biochim. Biophys. Acta, 907, 1-32.

    Google Scholar 

  47. Greenberg, R. A., O'Hagan, R. C., Deng, H., and Xiao, Q. (1999) Oncogene, 18, 1219-1226.

    Google Scholar 

  48. Horikawa, I., Cable, P. L., Afshari, C., and Barrett, J. C. (1999) Cancer Res., 59, 826-830.

    Google Scholar 

  49. Takakura, M., Kyo, S., Kanaya, T., and Hirano, H. (1999) Cancer Res., 59, 551-557.

    Google Scholar 

  50. Wu, K._J., Grandori, C., Amacker, M., and Simon-Vermot, N. (1999) Nature Genet., 21, 220-224.

    Google Scholar 

  51. Kanaya, T., Kyo, S., Hamada, K., and Takakura, M. (2000) Clin. Cancer Res., 6, 1239-1247.

    Google Scholar 

  52. Kusumoto, M., Ogawa, T., Mizumoto, K., and Ueno, H. (1999) Clin. Cancer Res., 5, 2140-2147.

    Google Scholar 

  53. Xu, D., Wang, Q., Gruber, A., and Bjorkholm, M. (2000) Oncogene, 19, 5123-5133.

    Google Scholar 

  54. Li, H., Cao, Y., Berndt, M. C., Funder, J. W., and Liu, J.-P. (1999) Oncogene, 18, 6785-6794.

    Google Scholar 

  55. Kalassy, M., Martel, N., Damour, O., Yamaskai, H., and Nakazawa, H. (1998) Mol. Carcinog., 21, 26-36.

    Google Scholar 

  56. Helmreich, E. J. M. (2001) The Biochemistry of Cell Signaling, Oxford University Press, Oxford.

    Google Scholar 

  57. Leslie, N. R., and Downes, C. P. (2002) Cell Signaling, 14, 285-295.

    Google Scholar 

  58. Cantley, L. C. (2002) Science, 296, 1655-1657.

    Google Scholar 

  59. Kang, S. S., Kwon, T., Kwon, D. Y., and Do, S. I. (1999) J. Biol. Chem., 274, 1385-1389.

    Google Scholar 

  60. Breitschopf, K., Zeiher, A. M., and Dimmeler, S. (2001) FEBS Lett., 493, 21-25.

    Google Scholar 

  61. Goekjian, P. G., and Jirousek, M. R. (2001) Expert. Opin. Invest. Drugs, 10, 2117-2140.

    Google Scholar 

  62. Newton, A. C. (2001) Chem. Rev., 101, 2353-2364.

    Google Scholar 

  63. Li, H., Zhao, L., Yang, Z., Funder, J. W., and Liu, J.-P. (1998) J. Biol. Chem., 273, 33436-33442.

    Google Scholar 

  64. Bodnar, A. G., Kim, N. W., Effros, R. B., and Chiu, C. P. (1996) Exp. Cell Res., 228, 58-64.

    Google Scholar 

  65. Ku, W.-C., Cheng, A.-J., and Wang, T.-Z. V. (1997) Biochem. Biophys. Res. Commun., 241, 730-736.

    Google Scholar 

  66. Yu, C. C., Lo, S. C., and Wang, T. C. (2001) Biochem. J., 355 (Pt. 2), 459-464.

    Google Scholar 

  67. Moon, R. T., Bowerman, B., Boutros, M., and Perrimon, N. (2002) Science, 296, 1644-1646.

    Google Scholar 

  68. Olson, D. J., Oshimura, M., Otte, A. P., and Kumar, R. (1998) Tumor Biol., 19, 244-252.

    Google Scholar 

  69. Attisano, L., and Wrana, J. L. (2002) Science, 296, 1646-1647.

    Google Scholar 

  70. Orian, A., and Eisenman, N. (2001) Science's STKE: http://stke.sciencemag.org/cgi/content/full/OC-sig-trans;2001/88/pe1.

  71. Seoane, J., Pouponnot, C., Staller, P., Schader, M., Eilers, M., and Massague, J. (2001) Nat. Cell. Biol., 3, 400-408.

    Google Scholar 

  72. Yang, H., Kyo, S., Takatura, M., and Sun, L. (2001) Cell Growth Differentiation, 12, 119-127.

    Google Scholar 

  73. Massague, J., and Weis-Garcia, F. (1996) Cancer Surv., 27, 41-64.

    Google Scholar 

  74. Online Mendelian Inheritance in Man: www.ncbi.nlm.nih.gov/omim/wt1.

  75. Hewitt, S. M., Hamada, S., McDonnell, T. J., Rauscher, F. J., and Saunders, G. F. (1995) Cancer Res., 55, 5386-5389.

    Google Scholar 

  76. Englert, C., Maheswaran, S., Garvin, A. J., Kreidberg, J., and Haber, D. A. (1997) Cancer Res., 57, 1429-1434.

    Google Scholar 

  77. Castro-Rivera, E., Samudio I., and Safe, S. (2001) J. Biol. Chem., 276, 30853-30861.

    Google Scholar 

  78. Planas-Silva, M. D., Donaher, J. L., and Weinberg, R. A. (1998) Cancer Res., 30, 511-524.

    Google Scholar 

  79. Prall, O. W., Rogan, E. M., and Sutherl, R. L. (1998) J. Steroid Biochem. Mol. Biol., 65, 169-174.

    Google Scholar 

  80. Misiti, S., Nanni, S., and Fontemaggi, G. (2000) Mol. Cell. Biol., 20, 3764-3771.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altshuler, M.L., Severin, S.E. & Glukhov, A.I. The Tumor Cell and Telomerase. Biochemistry (Moscow) 68, 1275–1283 (2003). https://doi.org/10.1023/B:BIRY.0000011648.51641.04

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRY.0000011648.51641.04

Navigation