Skip to main content
Log in

Active Dimeric Form of Inorganic Pyrophosphatase from Escherichia coli

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A dimeric form can be obtained from native hexameric Escherichia coli inorganic pyrophosphatase (E-PPase) by destroying the hydrophobic intersubunit contacts, and it has been shown earlier to consist of the subunits of different trimers. The present paper is devoted to the kinetic characterization of such a “double-decked” dimer obtained by the dissociation of either the native enzyme or the mutant variant Glu145Gln. The dimeric form of the native inorganic pyrophosphatase was shown to retain high catalytic efficiency that is in sharp contrast to the dimers obtained as a result of the mutations at the intertrimeric interface. The dimeric enzymes described in the present paper, however, have lost the regulatory properties, in contrast to the hexameric and trimeric forms of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Baykov, A. A., Hyytia, T., Volk, S. E., Kasho, V. N., Vener, A. V., Goldman, A., Lahti, R., and Cooperman, B. S. (1996) Biochemistry, 35, 4655-4661.

    Google Scholar 

  2. Cooperman, B. S., Baykov, A. A., and Lahti, R. (1992) TIBS, 17, 262-266.

    Google Scholar 

  3. Oganessyan, V. Yu., Kurilova, S. A., Vorobyeva, N. N., Nazarova, T. I., Popov, A. N., Lebedev, A. A., Avaeva, S. M., and Harutyunyan, E. H. (1994) FEBS Lett., 348, 301-304.

    Google Scholar 

  4. Kankare, J., Salminen, T., Lahti, R., Cooperman, B. S., Baykov, A. A., and Goldman, A. (1996) Biochemistry, 35, 4670-4677.

    Google Scholar 

  5. Efimova, I. S., Salminen, A., Pohjanjoki, P., Lapinniemi, J., Magretova, N. N., Cooperman, B. S., Goldman, A., Lahti, R., and Baykov, A. A. (1999) J. Biol. Chem., 274, 3294-3299.

    Google Scholar 

  6. Sitnik, T. S., Vainonen, Yu. P., Rodina, E. V., Nazarova, T. I., Kurilova, S. A., Vorobyeva, N. N., and Avaeva, S. M. (2003) IUBMB Life, 55, 37-41.

    Google Scholar 

  7. Salminen, A., Efimova, I. S., Parfenyev, A. N., Magretova, N. N., Mikalahti, K., Goldman, A., Baykov, A. A., and Lahti, R. (1999) J. Biol. Chem., 274, 33898-33904.

    Google Scholar 

  8. Avaeva, S. M., Rodina, E. V., Vorobyeva, N. N., Kurilova, S. A., Nazarova, T. I., Sklyankina, V. A., Ogannesyan, V. Yu., Samygina, V. R., and Harutyunyan, E. H. (1998) Biochemistry (Moscow), 63, 671-684.

    Google Scholar 

  9. Vainonen, Yu. P., Kurilova, S. A., and Avaeva, S. M. (2002) Bioorg. Khim., 28, 426-433.

    Google Scholar 

  10. Josse, J. (1966) J. Biol. Chem., 241, 1938-1947.

    Google Scholar 

  11. Baykov, A. A., and Avaeva, S. M. (1981) Analyt. Biochem., 116, 1-4.

    Google Scholar 

  12. Perrin, D. D. (1979) Stability Constants of Metal-Ion Complexes, IUPAC Chemical Data Series, No. 22, Pergamon Press, Oxford.

    Google Scholar 

  13. Rodina, E. V., Vainonen, Yu. P., Vorobyeva, N. N., Kurilova, S. A., Nazarova, T. I., and Avaeva, S. M. (2001) Eur. J. Biochem., 268, 3851-3857.

    Google Scholar 

  14. Kurilova, S. A., Bogdanova, A. V., Nazarova, T. I., and Avaeva, S. M. (1984) Bioorg. Khim., 10, 1147-1152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vainonen, Y.P., Vorobyeva, N.N., Kurilova, S.A. et al. Active Dimeric Form of Inorganic Pyrophosphatase from Escherichia coli . Biochemistry (Moscow) 68, 1195–1199 (2003). https://doi.org/10.1023/B:BIRY.0000009133.16447.c1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRY.0000009133.16447.c1

Navigation