Skip to main content
Log in

Role of Arginine 226 in the Mechanism of Tryptophan Indole-Lyase from Proteus vulgaris

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the spatial structure of tryptophanase from Proteus vulgaris the guanidinium group of arginine 226 forms a salt bridge with the 3′-oxygen atom of the coenzyme. The replacement of arginine 226 with alanine using site-directed mutagenesis reduced the affinity of the coenzyme for the protein by one order of magnitude compared to the wild-type enzyme. The catalytic activity of the mutant enzyme in the reaction with L-tryptophan was reduced 105-fold compared to the wild-type enzyme. The rates of the reactions with some other substrates decreased 103-104-fold. The mutant enzyme catalyzed exchange of the C-α-proton in complexes with some inhibitors with rates reduced 102-fold compared to the wild-type enzyme. Absorption and circular dichroism spectra of the mutant enzyme and the enzyme–inhibitor complexes demonstrate that the replacement of arginine 226 with alanine does not significantly affect the tautomeric equilibrium of the internal aldimine, but it leads to an alteration of the optimal conformation of the coenzyme–substrate intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Snell, E. E. (1975) Adv. Enzymol., 42, 287-333.

    Google Scholar 

  2. Newton, W. A., Morino, Y., and Snell, E. E. (1965) J. Biol. Chem., 240, 1211-1218.

    Google Scholar 

  3. Davis, L., and Metzler, D. (1972) Enzymes, 7, 334-338.

    Google Scholar 

  4. Phillips, R. S., Sundararaju, B., and Faleev, N. G. (2000) J. Am. Chem. Soc., 122, 1008-1114.

    Google Scholar 

  5. Isupov, M. N., Antson, A. A., Dodson, G. G., Dodson, E. J., Dementieva, I. S., Zakomirdina, L. N., Wilson, K. S., Dauter, Z., and Harutyunyan, E. H. (1998) J. Mol. Biol., 276, 603-623.

    Google Scholar 

  6. Boyland, E., Manson, D., and Nery, R. (1962) J. Chem. Soc., 2, 606-612.

    Google Scholar 

  7. Savige, W. E., and Fontana, A. (1980) Int. J. Peptide Protein Res., 15, 285-297.

    Google Scholar 

  8. Kamath, A. V., and Yanofsky, C. (1992) J. Biol. Chem., 267, 19978-19985.

    Google Scholar 

  9. Vieira, J., and Messing, J. (1987) Meth. Enzymol., 153, 1-34.

    Google Scholar 

  10. Taylor, J. W., Ott, J., and Eckstein, F. (1985) Nucleic Acids Res., 13, 8764-8785.

    Google Scholar 

  11. Sanger, F., Nicklen, S., and Coulsen, A. R. (1977) Proc. Natl. Acad. Sci. USA, 74, 5463-5467.

    Google Scholar 

  12. Zakomirdina, L. N., Kulikova, V. V., Gogoleva, O. I., Dementieva, I. S., Faleev, N. G., and Demidkina, T. V. (2002) Biochemistry (Moscow), 67, 1189-1196.

    Google Scholar 

  13. Weber, K., and Osborn, M. (1969) J. Biol. Chem., 244, 4406-4412.

    Google Scholar 

  14. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265-275.

    Google Scholar 

  15. Phillips, R. S., and Gollnick, P. D. (1989) J. Biol. Chem., 264, 10627-10632.

    Google Scholar 

  16. Suelter, C. H., Wang, J., and Snell, E. E. (1976) FEBS Lett., 66, 230-232.

    Google Scholar 

  17. Morino, Y., and Snell, E. E. (1970) Meth. Enzymol., 17A, 439-446.

    Google Scholar 

  18. Cleland, W. W. (1979) Meth. Enzymol., 63, 103-138.

    Google Scholar 

  19. Glasoe, P. V., and Long, F. A. (1960) J. Phys. Chem., 64, 188-194.

    Google Scholar 

  20. Berezin, A. V., and Klesov, A. A. (1976) Apprentice Course of Chemical and Enzyme Kinetics [in Russian], MGU Publishers, Moscow, p. 168.

    Google Scholar 

  21. Peterson, E. A., and Sober, H. A. (1954) J. Amer. Chem. Soc., 76, 169-175.

    Google Scholar 

  22. Morino, Y., and Snell, E. E. (1967) J. Biol. Chem., 242, 5591-5601.

    Google Scholar 

  23. Klotz, I. M., and Hunston, D. L. (1971) Biochemistry, 76, 169-175.

    Google Scholar 

  24. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Nucleic Acids Res., 25, 3389-3402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulikova, V.V., Zakomirdina, L.N., Bazhulina, N.P. et al. Role of Arginine 226 in the Mechanism of Tryptophan Indole-Lyase from Proteus vulgaris . Biochemistry (Moscow) 68, 1181–1188 (2003). https://doi.org/10.1023/B:BIRY.0000009131.78603.8b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRY.0000009131.78603.8b

Navigation