Skip to main content
Log in

Characterization of a High Affinity Folate Binding Protein in Porcine Serum: Ionic Charge, Concentration—Dependent Polymerization and Ligand Binding Mechanism

  • Published:
Bioscience Reports

Abstract

The folate binding protein in porcine serum, present at concentrations of 50-100 nM, is cationic at near neutral pH as evidenced by ion exchange chromatography. The gel filtration profile of the protein isolated from porcine serum by methotrexate affinity chromatography exhibited one peak at 48 kDa and an additional peak of 91 kDa at higher protein concentrations. This could suggest the involvement of concentration-dependent polymerization phenomena. Binding of [3H] folate was of a high-af.nity type with upward convex Scatchard plots and Hill coefficients >1.0 indicative of apparent positive cooperativity. However, binding to protein isolated from porcine serum after affinity chromatography was biphasic (high/low-affinity) in the absence of Triton X-100, 1 g/1. These findings which are similar to those reported for purified milk folate binding proteins are consistent with a model predicting association between unliganded and liganded monomers to weak-ligand affinity heterodimers. Amphiphatic substances, e.g. Triton X-100, form micelles which could separate hydrophobic unliganded monomers from hydrophilic liganded monomers (monomers are hydrophilic in the liganded state) thereby preventing heterodimerization. The folate analogue N10 methyl folate was a potent and competitive inhibitor of [3H] folate binding to the folate binding protein, and moreover changed the binding type to apparent negative cooperativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Antony, A. C. (1996) Annu. Rev. Nutr. 16:501–521.

    Google Scholar 

  2. Hansen, S. I., Holm, J., and Lyngbye, J. (1979) Biochim. Biophys. Acta 579:479–482.

    Google Scholar 

  3. Svendsen, I., Martin, B., Pedersen, T. G., Hansen, S. I., Holm, J., and Lyngbye, J. (1979) Carlsberg Res. Commun. 44:89–99.

    Google Scholar 

  4. Holm, J., Hansen, S. I., and Høier-Madsen, M. (2002) Biosci. Rep. 22:443–454.

    Google Scholar 

  5. Svendsen, I., Hansen, S. I., Holm, J., and Lyngbye, J. (1984) Carlsberg Res. Commun. 49:123–131.

    Google Scholar 

  6. Svendsen, I., Hansen, S. I., Holm, J., and Lyngbye, J. (1982) Carlsberg Res. Commun. 47:371–376.

    Google Scholar 

  7. Pedersen, T. G., Svendsen, I., Hansen, S. I., Holm, J., and Lyngbye, J. (1980) Carlsberg Res. Commun. 45:161–166.

    Google Scholar 

  8. Holm, J. and Hansen, S. I. (2001) Biosci. Rep. 21:305–313.

    Google Scholar 

  9. Hansen, S. I., Holm, J., Lyngbye, J., Pedersen, T. G., and Svendsen, I. (1983) Arch. Biochem. Biophys. 226:636–642.

    Google Scholar 

  10. Kaarsholm, K. C., Kolstrup, A.-M., Danielsen, S. E., Holm, J., and Hansen, S. I. (1993) Biochem. J. 292:921–925.

    Google Scholar 

  11. Salter, D. N., Scott, K. J., Slade, H., and Andrews, P. (1981) Biochem. J. 193:469–476.

    Google Scholar 

  12. Sigurskjold, B. W., Christensen, T., Hansen, S. I., and Holm, J. (1997) in Chemistry and Biology of Pteridines and Folates, (W. Pfleiderer, and H. Rokos, eds.) Blackwell Science, pp. 345–348.

  13. Hansen, S. I., Holm, J., and Lyngbye, J. (1981) Biosci. Rep. 1:721–726.

    Google Scholar 

  14. Holm, J. and Hansen, S. I. (2002) Biosci. Rep. 22:431–441.

    Google Scholar 

  15. Holm, J. and Hansen, S. I. (2003) Biosci. Rep. 23:77–85.

    Google Scholar 

  16. Holm, J., Hansen, S. I., and Lyngbye, J. (1980) Biochim. Biophys. Acta 629:539–545.

    Google Scholar 

  17. Mantzos, J. D., Alevizou-Terzaki, V., and Gyftaki, E. (1974) Acta. Haemat. 51:204–210.

    Google Scholar 

  18. Sasaki, K., Natsuhori, M., Shimoda, M., Saima, Y., and Kokue, E. (1996) Am. J. Physiol. 270:R105–R110.

    Google Scholar 

  19. Hansen, S. I., Holm, J., Lyngbye, J., Pedersen, J. K., and Vinnergaard, T. (1982) IRCS Med. Sci. 10:577–578.

    Google Scholar 

  20. Kane, M. A. and Waxman, S. (1989) Lab. Invest. 60:737–746.

    Google Scholar 

  21. Natsuhori, M., Okada, M., Ida, R., Sasaki, K., Shimoda, M, and Kokue, E. (1999) J. Vet. Med. Sci. 61:743–748.

    Google Scholar 

  22. Holm, J., Hansen, S. I., and Lyngbye, J. (1980) Biochem. Pharmacol. 29:3109–3112.

    Google Scholar 

  23. Hansen, S. I., Holm, J., and Lyngbye, J. (1977) Scand. J. Clin. Lab. Invest. 37:363–367.

    Google Scholar 

  24. Hansen, S. I., Holm, J., and Lyngbye, J. (1978) Biochim. Biophys. Acta 535:309–318.

    Google Scholar 

  25. Hansen, S. I., Holm, J., and Lyngbye, J. (1982) Clin. Chem. 28:117–118.

    Google Scholar 

  26. Holm, J., Hansen, S. I., and Lyngbye, J. (1980) Clin. Chem. 26:1591–1592.

    Google Scholar 

  27. Nichol, L. W., Jackson, W. J. H., and Winzor, D. J. (1967) Biochemistry 6:2449–2456.

    Google Scholar 

  28. Nichol, L. W. and Winzor, D. J. (1976) Biochemistry 15:3015–3019.

    Google Scholar 

  29. Cann, J. R. (1978) Methods Enzymol. 48:299–307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holm, J., Ingemann Hansen, S. Characterization of a High Affinity Folate Binding Protein in Porcine Serum: Ionic Charge, Concentration—Dependent Polymerization and Ligand Binding Mechanism. Biosci Rep 23, 339–351 (2003). https://doi.org/10.1023/B:BIRE.0000019190.88661.1e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRE.0000019190.88661.1e

Navigation