Skip to main content
Log in

Polymorphism, Heteroplasmy, Mitochondrial Fusion and Diabetes

  • Published:
Bioscience Reports

Abstract

Mitochondrial DNA (mtDNA) is highly susceptible to mutations that result in polymorphisms and diseases including diabetes. We analyzed heteroplasmy, polymorphisms related to diabetes, and complementation by fusogenic proteins. Cytoplast fusion and microinjection allow, defects in mutated mtDNA inside a heteroplasmic cell to be complemented by fusing two mitochondria via human fusogenic proteins. We characterized three hfzos as well as two OPA1s that prevent apoptosis. Two coiled coil domains and GTPase domains in these fusogenic proteins regulate membrane fusion. The hfzo genes were expressed mainly in the brain and in muscle that are postmitotic, but not in the pancreas. Under the in.uence of polymorphisms of mtDNA and nDNA, the vicious circle of reactive oxygen species and mutations in cell can be alleviated by mitochondrial fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chomyn, A. and Attardi, G. (2003) MtDNA mutations in aging and apoptosis. Biochem. Biophys. Res. Commun. 304:519–529.

    Google Scholar 

  2. Andrews. R. M., Kubacka. I., Chinnery. P. F., Lightowlers. R. N., Turnbull. D. M., and Howell. N. (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23:147.

    Google Scholar 

  3. Kagawa, Y., Hamamoto, T., Endo, H., Ichida, M., Shibui, H., and Hayakawa, M. (1997) Genes of human ATP synthase: Their roles in physiology and aging. Biosci. Rep. 17:115–146.

    Google Scholar 

  4. Ono, T., Isobe, K., Nakada, K., and Hayashi, JI (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat. Genet. 28:272–275.

    Google Scholar 

  5. Attardi, G., Enriquez, J. A., and Cabezas-Herrera, J. (2002) Inter-mitochondrial complementation of mtDNA mutations and nuclear context. Nat. Genet. 30: 360–361.

    Google Scholar 

  6. Hayashi, J., Ohta, S., Kikuchi, A., Takemitsu, M., Goto, Y., and Nonaka, I. (1991) Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA. 88:10614–10618.

    Google Scholar 

  7. Kagawa, Y., Inoki, Y.,and Endo, H. (2001) Gene therapy by mitochondrial transfer. Adv Drug Deliv. Rev. 49:107–119.

    Google Scholar 

  8. Inoki, Y. et al. (2000) Proteoliposomes colocalized with endogenous mitochondria in mouse fertilized egg. Biochem. Biophys. Res. Commun. 27:183–191.

    Google Scholar 

  9. Inoue, K. et al. (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat. Genet. 26: 176–181.

    Google Scholar 

  10. Inoue, K., Ogura, A., and Hayashi, J. (2002) Production of mitochondrial DNA transgenic mice using zygotes. Methods 26: 358–363.

    Google Scholar 

  11. Nakada, K. et al. (2001) Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat. Med. 7:895–896.

    Google Scholar 

  12. Evans, M. J., Curer, C., Loike, J. D., Wilmut, I., Schhnieke, A. E., and Schon, E. A. (1999) Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat. Genet 23: 90–93.

    Google Scholar 

  13. Barritt, J. A., Brenner, C. A., Malter, H. E., and Cohen, J. (2001) Mitochondria in human offspring derived from ooplasmic transplantation. Hum. Reprod. 16:513–516.

    Google Scholar 

  14. Kagawa, Y., Cha, S. H., Hasegawa, K., Hamamoto, T., and Endo, H. (1999) Regulation of energy metabolism in human cells in aging and diabetes: F0F1, mtDNA, UCP, and ROS. Biochem. Biophys. Res. Commun. 266:662–676.

    Google Scholar 

  15. Pang, C. W., Lee, H. C., and Wei, Y. H. (2001) Enhanced oxidative damage in mitochondrial DNA: implication of oxidative stress in the pathogenesis of mitochondrial diabetes. Diabetes Res. Clin. Pract. 54:45–56.

    Google Scholar 

  16. Linnane, A. W., Marzuki, S., Ozawa, T., and Tanaka, M. (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645.

    Google Scholar 

  17. Biondokas, V. P., Kuznetsov, A., Sreenan, S., Plonsky, K. S., Roe, M. W., and Phillipson, L.H. (2003) Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J. Biol. Chem. 278:9796–9801.

    Google Scholar 

  18. Kobayashi, Y. et al. (1990) A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes).Biochem. Biophys. Res Commun. 173:816–822.

    Google Scholar 

  19. Goto, Y., Nonaka, I., and Horai, S. (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–653.

    Google Scholar 

  20. Schoffner, J. M., Lott, M. T., Lezza, A. M., Seibel, P., Ballinger, S. W., and Wallace, D. C. (1990) Myoclonic epilepsy and ragged red fiber disease (MERRF) is associated with the DNAtRNALys mutation. Cell 61:931–937.

    Google Scholar 

  21. Schmiedel, J., Jackson, S., Schafer, J., and Reichmann, H. (2003) Mitochondrial cytopathies. J. Neurol. 250:267–277.

    Google Scholar 

  22. Mimaki, M. et al. (2003) A double mutation (G11778 and G12192A) in mitochondrial DNA associated with Leber's hereditary optic neuropathy and cardiomyopathy. J. Hum. Genet. 48:47–50.

    Google Scholar 

  23. Man, P. Y., Turnbull, D. M. and Chinnery, P.F. (2002) Leber's hereditary optic neuropathy. J. Med. Genet. 39:162–169.

    Google Scholar 

  24. Holt, I. J., Harding, A. E., Petty, R. K., and Morgan-Hughs, J. A. (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46:428–433.

    Google Scholar 

  25. Geromel, V. et al. (2001) Superoxide-induced massive apoptosis in cultured skin fibroblasts harboring the neurogenic ataxia retinitis pigmentosa (NARP) mutation in the ATPase-6 gene of mitochondrial DNA. Hum. Mol. Genet. 10:1221–1228.

    Google Scholar 

  26. Taniike, M. et al. (1992) Mitochondrial tRNA Ile mutation in fatal cardiomyopathy. Biochem. Biophys. Res. Commun. 186:47–53.

    Google Scholar 

  27. Yasukawa, T., Suzuki, T., Ueda, T., Ohta, S., and Watanabe, K. (2000) Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs (Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J. Biol. Chem. 275:4251–4257.

    Google Scholar 

  28. Suzuki, T., Suzuki, T. Wada, T., Saigo, K., and Watanabe, K. (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J. 21:6581–6589.

    Google Scholar 

  29. Shanske, S. et al. (1990) Widespread tissue distribution of mitochondrial DNA deletions in Kearns– Sayer Syndrome. Neurology 40:24–28.

    Google Scholar 

  30. Kagawa, Y., Yuzaki, M., Ohta, S., Tominaga, K., Ohtsuka, M., and Kanazawa, I. (1991) Multiple deletions of mitochondrial DNA in patients with familial mitochondrial myopathy. Progr. Neuropathol 7:129–139.

    Google Scholar 

  31. Gerhard, G. S. et al. (2002) Mitochondrial DNA mutation analysis in human skin fibroblasts from fetal, young and old donors. Mech. Ageing Devel. 123:156–166.

    Google Scholar 

  32. Fukagawa, N. K., Li, M., Liang, P., Russell, J. C., Sobel, B. E., and Absher, P.M. (1999) Aging and high concentration of glucose potentiate injury to mitochondrial DNA. Free Radic. Biol. Med. 27:1437–1443.

    Google Scholar 

  33. Mirabella, M. D., Giovanni, S., Silvestri, G., Tonali, P., and Servidei, S. (2000) Apoptosis in mitochondrial encephalomyopathies with mitochondrial DNA mutations: a potential pathogenic mechanism. Brain 123:93–104.

    Google Scholar 

  34. Ikezoe, K., Nakagawa, M., Yan, C., Kira, J., Goto, Y., and Nonaka, I. (2002) Apoptosis is suspended in muscle of mitochondrial encephalomyopathies. Acta Neuropathol. 103:531–540.

    Google Scholar 

  35. Guillausseau, P.-J., et al. (2001) Maternally inherited diabetes and deafness: A multicenter study. Ann. Internal Med. 134:721–728.

    Google Scholar 

  36. Tawata, M. (2000) A new mitochondrial DNA point mutation at 14577T/C is probably a major pathogenic mutation for maternally inherited type 2 diabetes mellitus. Diabetes 49:1269–1272.

    Google Scholar 

  37. Shiraiwa, N., Ishii, A., Iwamoto, H., Mizusawa, H., Kagawa, Y., and Ohta, S. (1993) Content of mutant mitochondrial DNA and organ-dysfunction in a patient with a MELAS-subgroup of mitochondrial encephalomyopathies. J. Neurol. Sci. 120:174–179.

    Google Scholar 

  38. Jeppesen, T. D., Schwartz, M., Olsen, D. B., and Vissing, J. (2003) Oxidative capacity correlates with muscle mutation load in mitochondrial myopathy. Ann. Neurol. 54:86–92.

    Google Scholar 

  39. Olsson, C., Zethelius, B., Lagerstome-Fermer, M., Asplund, J., Berne, C., and Landegren, U. (1998) Level of heteroplasmy for the mitochondrial mutation A3243G correlates with age at onset of diabetes and deafness. Hum. Mutat. 12:52–58.

    Google Scholar 

  40. Szibor M. and Holtz, J. (2003) Mitochondrial aging. Basic Res. Cardiol. 98:210–18.

    Google Scholar 

  41. Calloway, C. D., Reynolds, R. L., Herrin, G. L. Jr. and Anderson, W. W. (2000) The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increase with age. Am. J. Hum. Genet. 66:1384–1397.

    Google Scholar 

  42. Smith, L. C., Bordignon, V., Couto, M. M., Garcia, S. M., Yamazaki, W., and Meirelles, F. V. (2002) Mitochondrial genotype segregation and the bottle neck. Reprod. Biomed. Online. 4:248–255.

    Google Scholar 

  43. Kitagawa, T., Suganuma, N., Nawa, F., Tanaka, M., Ozawa, T., and Tomoda, Y. (1993) Rapid accumulation of deleted mitochondrial deeoxynucleic acid in postmenopausal ovaries. Biol. Reprod. 49:730–736.

    Google Scholar 

  44. Van Blerkom, J., Sinclair, J., and Davis, P. (1998) Mitochondrial transfer between oocytes: potential application of mitochondrial donation and the issue of heteroplasmy. Hum. Reprod. 13:2857–2868.

    Google Scholar 

  45. Dey, R., Barrientos, A., and Moraes, C. T. (2000) Functional constraints of nuclear-mitochondrial DNA interactions in xenomitochondrial rodent cell lines. J. Biol. Chem. 275:31520–31527.

    Google Scholar 

  46. Kagawa, Y. et al. (2002) Single nucleotide polymorphism of thrifty genes for energy metabolism: evolutionary origins and prospects for intervention to prevent obesity-related diseases. Biochem. Biophys. Res. Commun. 295:207–222.

    Google Scholar 

  47. Horai, S. et al. (1996) mtDNA polymorphism in East Asian Populations, with special reference to the peopling of Japan. Am. J. Hum. Genet. 59, 579–590.

    Google Scholar 

  48. Matsunaga. H. et al. (2001) Anti-atherogenic mitochondrial genotype in patients with type 2 diabetes. Diabetes Care 24:500–503

    Google Scholar 

  49. Torroni, A. and Wallace D. C. (1994) Mitochondrial DNA variation in human populations and implications for detection of mitochondrial DNA mutations of pathological significance. J. Bioenerg. Biomembr. 26:261–271.

    Google Scholar 

  50. Kagawa, Y. (1997) Mitochondrial disease and polymorphism in the genes for energy transduction. In Advances in Research on DNA Polymorphisms (ed. ISFH Hakone Symposium Program Committee) pp. 48–60. Toyoshoten, Tokyo.

  51. Horai, S. (2000) The origin and dispersal of mordern humans: inferred from mitochondrial DNA. (In Japanese) Protein, Nucleic Acid Protein 45:2579–2587.

    Google Scholar 

  52. Yanagisawa, Y. et al. (2001) Uncoupling protein 3 and peroxisome proliferator-activated receptor γ2 contribute to obesity and diabetes in Palauans. Biochem. Biophys. Res. Commun. 281:772–778.

    Google Scholar 

  53. Schurr, T. G. and Wallace D. C. (2002) Mitochondrial DNA diversity in Southeast Asian populations. Hum. Biol. 74:431–452.

    Google Scholar 

  54. Umetsu, K. et al. (2001) Multiplex amplified product-length polymorphism analysis for rapid detection of human mitochondrial DNA variations. Electrophoresis 22:3533–3538.

    Google Scholar 

  55. Tanaka, M., Gong, J., Zhang, J., Yamada, Y., Borgeld, H. J., and Yagi, K. (2000) Mitochondrial genotype associated with longevity and its inhibitory effect on mutagenesis. Mech. Ageing Dev. 116:65–76.

    Google Scholar 

  56. Carvajal-Carmona, L. G. et al. (2000) Strong Amerind/white sex bias and a possible Sephardic contribution among the founders of a population in northwest Columbia. Am. J. Hum. Genet. 67:1287–1295.

    Google Scholar 

  57. Simmons, D., Gatland, B. A., Leakehe, L., and Fleming, C. (1995) Frequency of diabetes in family members of probands with non-insulin-dependent diabetes mellitus. J. Internal. Med. 237:315–321.

    Google Scholar 

  58. Carelli, V., Giordano, C., and d'Amati, G. (2003) Pathogenic expression of homoplasmic mtDNA mutations needs a complex nuclear-mitochondrial interaction. Trends Genet. 19:257–262.

    Google Scholar 

  59. Ichida, M. et al. (2000) Differential regulation of exonic regulatory elements for muscle-specific alternative splicing during myogenesis and cardiogenesis. J. Biol. Chem. 275:15992–16001.

    Google Scholar 

  60. Hayakawa, M. et al. (2002) Muscle-specific exonic splicing silencer for exon exclusion in human ATP synthase γ-subunit pre-mRNA. J. Biol. Chem. 277:6974–6984.

    Google Scholar 

  61. Hayashi, J. et al. (1994) Nuclear but not mitochondrial genome involvement in human age-related mitochondrial dysfunction. Functional integrity of mitochondrial DNA from aged subjects. J. Biol. Chem. 269:6878–6883.

    Google Scholar 

  62. Ito, S., et al. (1999) Functional integrity of mitochondrial genomes in human platelets and autopsied brain tissues from elderly patients with Alzheimer's disease. Proc. Natl. Acad. Sci. USA 96:2099–2103.

    Google Scholar 

  63. King, M. P. and Attardi, G. (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by repopulation. Science 246:500–503.

    Google Scholar 

  64. Hussain, M. M., Strickland, D. K., and Bakillah, A. (1999) The mammalian low-density lipoprotein receptor family. Ann. Rev. Nutr. 19:142–172.

    Google Scholar 

  65. Hathout, E., Lakey, J., and Shapiro, J. (2003) Islet tansplant: an option for childhood diabetes? Arch. Dis. Child. 88:591–594.

    Google Scholar 

  66. Yoneda. M., Miyatake, T., and Attardi, G. (1994) Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol. Cell Biol. 14:2699–2712.

    Google Scholar 

  67. Hales, K. G. and Fuller, M. T. (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90:121–129.

    Google Scholar 

  68. Hermann, G. J. et al. (1998) Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143:359–373.

    Google Scholar 

  69. Sentel, A., Frank, S., Gaume, B., Herrier, M., Youle, R. J., and Fuller, M. T. (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 116:2763–2774.

    Google Scholar 

  70. Sesaki, H., Southerd, S. M., Yaffe, M. P., and Jensen, R.E. (2003) Mgm1p, a diynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell. 14:2342–2356.

    Google Scholar 

  71. Satoh, M., Hamamoto, T., Seo, N., Kagawa, Y., and Endo, H. (2003) Differential sublocalization of the dynamin-related protein OPA1 isoforms In mitochondria. Biochem. Biophys. Res. Commun. 300:482–493.

    Google Scholar 

  72. Hayashi, J-I. et al. (1994) Functional and morphological abnormalities of mitochondria in human cells containing mitochondrial DNA with pathogenic point mutations in tRNA genes. J. Biol. Chem. 269:19060–19066.

    Google Scholar 

  73. Olichon, A. et al. (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrom c release and apoptorsis. J. Biol. Chem. 278:7743–7746.

    Google Scholar 

  74. Mozdy, A. D. and Shaw, J. M. (2003) A fuzzy mitochondrial fusion apparatus comes into focus. Nat. Rev. Cell Biol. 4:468–478.

    Google Scholar 

  75. Zang, J. et al. (2003) Strikingly higher frequency in centernarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc. Natl. Acad. Sci. USA 100:1116–1121.

    Google Scholar 

  76. Tanaka, M. (2002) Mitochondrial genotypes and cytochrome b variants Associated with longevity or Parkinson's disease. J. Neurol. 249:Suppl 2: 111–118.

    Google Scholar 

  77. Maechler, P. and Wollheim, C. B. (2001) Mitochondrial function in normal and diabetic β-cells. Nature 414:807–812.

    Google Scholar 

  78. Poulton, J. (1998) Does a common mitochondrial DNA polymorphism underlie susceptibility to diabetes and thrifty genotype? Trends Genet. 14:387–389.

    Google Scholar 

  79. Wallace, D. C. (2002) Animal models for mitochondrial disease. Methods Mol. Biol. 197:3–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, A., Endo, H., Umetsu, K. et al. Polymorphism, Heteroplasmy, Mitochondrial Fusion and Diabetes. Biosci Rep 23, 313–337 (2003). https://doi.org/10.1023/B:BIRE.0000019189.35983.b9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRE.0000019189.35983.b9

Navigation