Skip to main content
Log in

Mitotracker Green Is a P-Glycoprotein Substrate

  • Published:
Bioscience Reports

Abstract

P-glycoprotein has a widespread expression on normal tissues. The protein has also been strongly associated with the multidrug resistance phenotype (MDR) on tumor cells. The employment of flow cytometry and confocal microscopy has contributed to the discovery and application of new particular fluorescent dyes. Nevertheless, several studies are being performed in different cellular types neglecting the expression activity of MDR proteins. Because many fluorochromes have been reported as P-glycoprotein substrates, an especial attention must be given to the properties of new dyes in the presence of MDR proteins. Flow cytometric analyzes of Mitotracker Green (MTG) fluorescence profile were performed in a human erythroleukemic cell line and its resistant counterpart. In this report we demonstrated that MTG, a probe used to evaluate the mitochondrial mass, is a P-glycoprotein substrate and its staining profile is dependent on the activity of this protein. In vitro studies on a human erythroleukemic cell line and its resistant counterpart revealed that MDR modulators (Cyclosporin A, Verapamil, and Trifluoperazine) alter the MTG fluorescence pattern on a resistant cell line. The findings suggest that attention should be given to the expression of P-glycoprotein when performing an evaluation of mitochondria properties with MTG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arboix, M., Paz, O. G., Colombo, T., and D'Incalci, M. (1997) Multidrug resistance-reversing agents increase vinblastine distribution in normal tissues expressing the P-glycoprotein but do not enhance drug penetration in brain and testis. J. Pharmacol. Exp. Ther. 281:1226–1230.

    Google Scholar 

  • Bernardi, P., Petronilli, V., Di Lisa, F. and Forte, M. (2001) A mitochondrial perspective on cell death. Trends Biochem. Sci. 26:112-117.

    Google Scholar 

  • Buckman, J. F., Hernandez, H., Kress, G. J., Votyakova, T. V., Pal, S., and Reynolds, I. J. (2001) MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial mem-brane potential and oxidants. J. Neurosci. Methods. 104:165-176.

    Google Scholar 

  • Colombo, T., Zucchetti, M., and D'Incalci, M. (1994) Cyclosporin A markedly changes the distribution of doxorubicin in mice and rats. J. Pharmacol. Exp. Ther. 269:22-27.

    Google Scholar 

  • de La Monte, S. M., Luong, T., Neely, T. R., Robinson, D., and Wands, J. R. (2001) Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer's disease. Alcohol Clin. Exp. Res. 25:898-906.

    Google Scholar 

  • Denecke, J., Fiedler, K., Hacker-Klom, U., Molenkamp, G., Jurgens, H., and Wolff, J. E. (1997) Mul-tiple drug-resistant C6 glioma cells cross-resistant to irradiation. Anticancer Res. 17:4531-4534.

    Google Scholar 

  • Diaz, G. et al. (2001) Intra-and intercellular distribution of mitochondrial probes and changes after treatment with MDR modulators. IUBMB Life 51: 121-126.

    Google Scholar 

  • Ford, J. M. and Hait, W. N. (1990) Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42:155-199.

    Google Scholar 

  • Garner, D. L., Thomas, C. A., Joerg, H. W., DeJarnette, J. M., and Marshall, C. E. (1997) Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 57:1401-1406.

    Google Scholar 

  • Gottesman, M. M. and Pastan, I. (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann. Rev. Biochem. 62:385-427.

    Google Scholar 

  • Gottesman, M. M., Hrycyna, C. A., Schoenlein, P. V., Germann, U.A., and Pastan, I. (1995) Genetic analyzis of the multidrug transporter. Ann. Rev. Genet. 29:607-649.

    Google Scholar 

  • Gottesman, M. M. and Ambudkar, S. V. (2001) Overview: ABC transporters and human disease. J. Bioenerg. Biomembr. 33:453-458.

    Google Scholar 

  • Haugland, R. P. (2002) Probes for organelles. In: Handbook of Fluorescent Probes and Research Products, Molecular Probes, Inc. Eugene, Oregon, pp. 473-488.

    Google Scholar 

  • Juliano, R. L. and Ling, V. (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152-162.

    Google Scholar 

  • Keij., J. F., Bell-Prince, C., and Steinkamp, J. A. (2000) Staining of mitochondrial membranes with 10-nonyl-acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial mem-brane potential altering drugs. Cytometry 39:203-210.

    Google Scholar 

  • Kessel, D., Beck, W. T., Kukuruga, D., and Schulz, V. (1991) Characterization of multidrug resistance by fluorescent dyes. Cancer Res. 51:4665-4670.

    Google Scholar 

  • Kuhnel, J. M., Perrot, J. Y., Faussat, A. M., Marie, J. P., and Schwaller, M.A. (1997) Functional assay of multidrug resistant cells using JC-1, a carbocyanine fluorescent probe. Leukemia 11:1147-1155.

    Google Scholar 

  • Maftah, A., Petit, J. M., Ratinaud, M. H., and Julien, R. (1989) 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state. Biochem. Biophys. Res. Com-mun. 164:185-190.

    Google Scholar 

  • Marques-Santos, L. F., Bernardo, R. R., de Paula, E. F., and Rumjanek, V. M. (1999a) Cyclosporin A and trifluoperazine, two resistance-modulating agents, increase ivermectin neurotoxicity in mice. Pharmacol. Toxicol. 84:125-129.

    Google Scholar 

  • Marques-Santos, L. F., Harab, R. C., de Paula, E. F., and Rumjanek, V. M. (1999b) The in ûiûo effect of the administration of resistance-modulating agents on rhodamine 123 distribution in mice thymus and lymph nodes. Cancer Lett. 137: 99-106.

    Google Scholar 

  • Martel, J., Payet, M. D., and Dupuis, G. (1997) The MDR1 (P-glycoprotein) and MRP (P-190) trans-porters do not play a major role in the intrinsic multiple drug resistance of Jurkat T lymphocytes. Leuk. Res. 21:1077-1086.

    Google Scholar 

  • Minderman, H. et al. (1996) DiOC2(3) is not a substrate for multidrug resistance protein (MRP)-mediated drug efflux. Cytometry 25:14-20.

    Google Scholar 

  • Neyfakh, A. A. (1988) Use of fluorescent dyes as molecular probes for the study of multidrug resistance. Exp. Cell. Res. 174:168-176.

    Google Scholar 

  • Petriz, J., O'Connor, J. E., and Garcia-Lopez, J. (1996) Rhodamine 123 efflux in drug resistance assays. Leukemia 10:748-749.

    Google Scholar 

  • Poot, M. and Pierce, R. C. (1999) Detection of apoptosis and changes in mitochondrial membrane potential with chloromethyl-X-rosamine. Cytometry 36:359-360.

    Google Scholar 

  • Rumjanek, V. M. et al. (2001) Multidrug resistance in tumour cells: characterization of the multidrug resistant cell line K562-Lucena 1. An. Acad. Bras. Cienc. 73:57-69.

    Google Scholar 

  • Rumjanek, V. M., Lucena, M., Campos, M.M., Marques-Silva, V. M., and Maia, R. C. (1994) Multidrug resistance in leukemia: the problem and some approaches to its circumvention. Ciencia Cult. 46:63-69.

    Google Scholar 

  • Schinkel, A. H. et al. (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491-502.

    Google Scholar 

  • Shapiro, H. M. (2000) Membrane potential estimation by flow cytometry. Methods 21:271-279.

    Google Scholar 

  • Sun, Q. Y. et al. (2201) Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122:155-163.

    Google Scholar 

  • Sweet, S. and Singh, G. (1999) Changes in mitochondrial mass, membrane potential, and cellular adenos-ine triphosphate content during the cell cycle of human leukemic (HL-60) cells. J. Cell. Physiol. 180:91-96.

    Google Scholar 

  • Vizler, C., Nagy, T., Kusz, E., Glavinas, H., and Duda, E. (2002) Flow cytometric cytotoxicity assay for measuring mammalian and avian NK cell activity. Cytometry 47:158-162.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques-Santos, L.F., Oliveira, J.G.P., Maia, R.C. et al. Mitotracker Green Is a P-Glycoprotein Substrate. Biosci Rep 23, 199–212 (2003). https://doi.org/10.1023/B:BIRE.0000007693.33521.18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRE.0000007693.33521.18

Navigation