Skip to main content
Log in

Differences in Anatomical Structure and Lignin Content of Roots of pedunculate Oak and Wild Cherry-Tree Plantlets During Acclimation

  • Published:
Biologia Plantarum

Abstract

The lignin contents and anatomical structure of roots of wild cherry (Prunus avium L.) and pedunculate oak (Quercus robur L.) plantlets were compared to explain differences in response during transfer from in vitro to ex vitro conditions. Lignification of cell walls increased significantly in both oak and cherry roots during the period of acclimation and finally lignin content of root tissues of in vitro propagated plantlets reached the levels not significantly different from seedlings grown in soil. Later on when secondary tissues appeared, lignified secondary xylem constituted most of the tissues of both species. The most conspicuous interspecific difference in root structure was the presence of phi-thickenings in cortical layers just outer to endodermis in cherry roots cultivated ex vitro. Formation of phi-thickenings was avoided in vitro and their presence thus seems to be under environmental control. Suberised well established exodermis was present in roots of oak but not detected in those of cherry. Very early development of exodermis in oak roots, preceding suberisation of endodermis, was recorded in vitro but not in well aerated soil. While multilayered and well-developed cork occurred in oak, only thin walled and less suberised secondary dermal tissues were found in cherry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bigot, C., Engelmann, F.: Vegetative propagation in vitro of Cunninghamia lanceolata (Lamb.) Hook.-In: Bonga, J.M., Durzan, D.J. (ed.): Cell and Tissue Culture in Forestry. Vol. III. Pp.114-127. Martinus Nijhoff Publishers, The Hague 1987.

    Google Scholar 

  • Bruce, R.J., West, C.A.: Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean.-Plant Physiol. 91: 889-897, 1989.

    Google Scholar 

  • Brundrett, M.C., Kendrick, B., Peterson, C.A.: Efficient lipid staining in plant material with Sudan Red 7B or Fluorol Yellow 088 in polyethylene glycol.-Biotech. Histochem. 66: 133-142, 1988.

    Google Scholar 

  • Clarkson, D.T., Robards, A.W.: The endodermis, its structural development and physiological role.-In: Torrey, J.G., Clarkson, D.T. (ed.): The Structure and Function of Roots. Pp. 415-436. Academic Press, London 1975.

    Google Scholar 

  • Degenhardt, B., Gimmler, H.: Cell wall adaptations to multiple environmental stresses in maize roots.-J. exp. Bot. 51: 595-603, 2000.

    Google Scholar 

  • Dijkstra, P., Lambers, H.: Analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate.-New Phytol. 113: 283-290, 1989.

    Google Scholar 

  • Enstone, D.E., Peterson, C.A.: The apoplastic permeability of root apices.-Can. J. Bot. 70: 1502-1512, 1992.

    Google Scholar 

  • Fahn, A.: Plant Anatomy (4 th Edition).-Pergamon Press, Oxford 1990.

    Google Scholar 

  • Fukuda, A.H., Komamine, A.: Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans.- Plant Physiol. 65: 57-60, 1980.

    Google Scholar 

  • Gaspar, T., Coumans, M.: Root formation.-In: Bonga, J.M., Durzan, D.J. (ed.): Cell and Tissue Culture in Forestry. Vol. II. Pp. 202-217. Martinus Nijhoff Publishers, The Hague 1987.

    Google Scholar 

  • Gerrath, J.M., Covington, L., Doubt, J., Larson, D.: Occurrence of phi-thickenings is correlated with gymnosperm systematics.-Can. J. Bot. 80: 852-860, 2002.

    Google Scholar 

  • Haas, D.L., Carothers, Z.B., Robbins, R.R.: Observation on the phi-thickenings and Casparian strips in Pelargonium roots.-Amer. J. Bot. 63: 863-867, 1976.

    Google Scholar 

  • Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L., Hartung, W.: The exodermis: a variable apoplastic barrier.-J. exp. Bot. 52: 2245-2264, 2001.

    Google Scholar 

  • Johansen, D.A.: Plant Microtechnique.-McGraw-Hill Book Co., New York 1940.

    Google Scholar 

  • Kamula, S.A., Peterson, C.A. Mayfield, C.I.: Impact of exodermis on infection of roots by Fusarium culmorum.-Plant Soil 167: 121-126, 1994.

    Google Scholar 

  • Lambers, H., Porter, H.: Inherent variation in growth rate between higher plants: a search for physiological causes and ecophysiological consequences.-Adv. ecol. Res. 23: 188-261, 1992.

    Google Scholar 

  • Lloyd, G., McCown, B.H.: Commercially-feasible micropropa-gation of mountain laurel Kalmia latifolia by use of shoot tip culture.-Comb. Proc. Int. Plant Propag. Soc. 30: 421-427, 1981.

    Google Scholar 

  • Mackenzie, K.A.D.: The development of the endodermis and phi layer of apple roots.-Protoplasma 100: 21-32, 1979.

    Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassay with tobacco tissue cultures.-Physiol. Plant. 15: 473-797, 1962.

    Google Scholar 

  • Peterson, C.A., Emanuel, M.E., Weerdenburg, C.A.: The permeability of phi thickenings in apple (Pyrus malus) and geranium (Pelargonium hortorum) roots to an apoplastic fluorescent dye tracer.-Can. J. Bot. 59: 1107-1110, 1981.

    Google Scholar 

  • Peterson, C.A., Emanuel, M.E., Wilson, C.: Identification of a Casparian band in the hypodermis of onion and corn roots.-Can. J. Bot. 60: 1529-1535, 1982.

    Google Scholar 

  • Peterson, C.A., Perumalla, C.J.: Development of the hypodermal Casparian band in corn and onion roots.-J. exp. Bot. 35: 51-57, 1984.

    Google Scholar 

  • Peterson, C.A., Perumalla, C.J.: A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis.-Bot. J. Linn. Soc. 103: 113-125, 1990.

    Google Scholar 

  • Peterson, R.L.: Adaptations of root structure in relation to biotic and abiotic factors.-Can. J. Bot. 70: 661-675, 1992.

    Google Scholar 

  • Pinker, I., Jesch, H.H., Klausch, A.: Rooting and acclimatization of in vitro propagated shoots of Tilia cordata "Wega".-Gartenbauwissenschaft 60: 253-258, 1995.

    Google Scholar 

  • Praktikakis, E., Rhizopoulou, S., Psaras, GK.: A phi layer in roots of Ceratonia siliqua L.-Bot. Acta 111: 93-98, 1998.

    Google Scholar 

  • Russow, E.: Betrachtungen über das Leitbündel aus phylogenetischem Gesichpunkt.-Schnakenburg's Anstalt, Dorpat 1875.

    Google Scholar 

  • Schreiber, L., Hartmann, K., Skrabs, M., Zeier, J.: Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls.-J. exp. Bot. 50: 1267-1280, 1999.

    Google Scholar 

  • Soukup, A., Votrubová, O., ýížková, H.: Development of anatomical structure of Phragmites australis.-New Phytol. 153: 277-287, 2002.

    Google Scholar 

  • Vietez, A.M., Vietez, M.L., Ballester, A.: In vitro chesnut regeneration: anatomical and chemical changes during the rooting process.-In: Proc. IUFRO Sect. S2015.I Workshop In Vitro Cultivation for Tree Species. Pp. 149-152. IUFRO, Fontainebleau 1981.

  • Von Guttenberg, H.: Der primäre Bau der Angiospermenwurzel.-Gebrüder Borntraeger, Berlin 1968.

    Google Scholar 

  • Weerdenburg, C.A., Peterson, C.A.: Structural changes in phi thickening during primary and secondary growth in root. 1. Apple (Pyrus malus) Rosaceae.-Can. J Bot. 61: 2570-2576, 1983.

    Google Scholar 

  • Zimmermann, H.M., Steudle, E.: Apoplastic transport across young maize roots: effect of the exodermis.-Planta 206: 7-19, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soukup, A., Malá, J., Hrubcová, M. et al. Differences in Anatomical Structure and Lignin Content of Roots of pedunculate Oak and Wild Cherry-Tree Plantlets During Acclimation. Biologia Plantarum 48, 481–489 (2004). https://doi.org/10.1023/B:BIOP.0000047141.49470.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOP.0000047141.49470.77

Navigation