Skip to main content

Sucrose Metabolism in Lupinus albus L. Under Salt Stress

Abstract

Salt stress (50 and 150 mM NaCl) effects on sucrose metabolism was determined in Lupinus albus L. Sucrose synthase (SS) activity increased under salt stress and sucrose phosphate synthase activity decreased. Acid invertase activity was higher at 50 mM NaCl and decreased to control levels at 150 mM NaCl. Alkaline invertase activity increased with the salt stress. Glucose content decreased with salt stress, sucrose content was almost three times higher in plants treated with 150 mM NaCl and fructose content did not change significantly. The most significant response of lupin plants to NaCl excess is the increase of sucrose content in leaves, which is partially due to SS activity increase under salinity.

This is a preview of subscription content, access via your institution.

References

  1. Balibrea, M.E., Cuartero, J., Bolarin, M.C., Perez-Alfocea, F.: Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity.-Physiol. Plant. 118: 38-46, 2001.

    Article  Google Scholar 

  2. Bradford, M.M.: A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.

    PubMed  CAS  Article  Google Scholar 

  3. Davies, K. Grierson, D. Edwards, R., Hobson, G.: Salt-stress induces partial ripening of the nor tomato mutant but expression of only some ripening-related genes.-J. Plant Physiol. 139: 140-145, 1991.

    CAS  Google Scholar 

  4. Elavumoottil, O.C., Martin, J.P., Moreno, M.L.: Changes in sugars, sucrose synthase activity and proteins in salinity tolerant callus and cell suspension cultures of Brassica oleracea L.-Biol. Plant. 46: 7-12, 2003.

    CAS  Article  Google Scholar 

  5. Fernandes, F.M., Arrabaça, M.C.: Influence of salt stress on growth in Lupinus albus L.-Agron. Lusitana 47: 217-226, 1999.

    Google Scholar 

  6. Fiew, S., Willenbrink, J.: Sugar transport and sugar-metabolizing enzymes in sugar beet storage roots (Beta vulgaris L. ssp. altissima).-J. Plant Physiol. 137: 216-223, 1990.

    Google Scholar 

  7. Guerrier, G.: Hydrolytic activities and metabolite contents during the germination of species sensitive or tolerant to NaCl.-Agrochimica 32: 463-481, 1988.

    CAS  Google Scholar 

  8. Hatterscheid, G., Willenbrink, J.: Mikroplattenleser zur enzymatischen Zuckerbestimmung.-BioTec Anal. 4: 46-48, 1991.

    Google Scholar 

  9. Hawker, J.S.: Invertases from leaves of Phaseolus vulgaris plant grown on nutrient solutions containing NaCl.-Aust. J. Plant Physiol. 7: 67-72, 1980.

    CAS  Article  Google Scholar 

  10. Irving, D. E., Hurst, P. L.: Respiration, soluble carbohydrates and enzymes of carbohydrate metabolism in tips of harvested asparagus spears.-Plant Sci. 94: 89-97, 1993.

    CAS  Article  Google Scholar 

  11. Johnson, C. Hall, J.L., Ho, L.C.: Pathways of uptake and accumulation of sugars in tomato fruit.-Ann. Bot. 61: 593-603, 1988.

    CAS  Google Scholar 

  12. Kaur, S., Gupta, A.K., Kaur, N.: Effect of kinetin on starch and sucrose metabolising enzymes in salt stressed chickpea seedlings.-Biol. Plant. 46: 67-72, 2003.

    CAS  Article  Google Scholar 

  13. Krishnaraj, S., Thorpe, T.A.: Salinity stress effects on [14C-1]-and [14C-6]-glucose metabolism of a salt-tolerant and salt-susceptible variety of wheat.-Int. J. Plant Sci. 157: 110-117, 1996.

    CAS  Article  Google Scholar 

  14. Munns, R., Greenway, H., Delane, R., Gibbs, J.: Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. II. Cause of the growth reduction.-J. exp. Bot. 33: 574-583, 1982.

    CAS  Google Scholar 

  15. Pérez-Alfocea, F., Larher, F.: Sucrose and proline accumulation and sugar efflux in tomato leaf discs affected by NaCl and polyethylene glycol 6000 iso-osmotic stresses.-Plant Sci. 107: 9-15, 1995.

    Article  Google Scholar 

  16. Poljakoff-Mayber, A.: Biochemical and physiological responses of higher plants to salinity stress.-In: San Prieto, A. (ed.): Biosaline Research. A Look to the Future. Pp. 245-270. Plenum Press, New York 1982.

    Google Scholar 

  17. Roe, J.H.: A colorimetric methods for the determination of fructose in blood and urine.-J. biol. Chem. 107: 15-22, 1934.

    CAS  Google Scholar 

  18. Sánchez-Blanco, M.J., Bolarín, M.C., Alarcón, J.J., Torrecillas, A.: Salinity effects on water relations in Lycopersicon esculentum and its wild salt-tolerant relative species L. pennellii.-Physiol. Plant. 83: 269-274, 1991.

    Article  Google Scholar 

  19. Shaddad, M.A., Radi, A.F., Abdel-Rahman, A.M., Azzoz, M.: Response of seeds of Lupinus termis and Vicia faba to the interactive effects of salinity and ascorbic acid or pyridoxine.-Plant Soil 122: 177-183, 1990.

    CAS  Google Scholar 

  20. Weiner, H., McMichael, R.W., Jr., Huber, S.C.: Identification of factors regulating the phosphorylation status of sucrose phosphate synthase in vivo.-Plant Physiol. 99: 1435-1442, 1992.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F.M. Fernandes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernandes, F., Arrabaça, M. & Carvalho, L. Sucrose Metabolism in Lupinus albus L. Under Salt Stress. Biologia Plantarum 48, 317 (2004). https://doi.org/10.1023/B:BIOP.0000033465.59361.d2

Download citation

  • invertases
  • sucrose phosphate synthase
  • sucrose synthase
  • sugars