Skip to main content
Log in

Effect of Aluminium on Oxidative Stress Related Enzymes Activities in Barley Roots

  • Published:
Biologia Plantarum

Abstract

The impact of aluminium stress on activities of enzymes of the oxidative metabolism: superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), NADH peroxidase (NADH-POD) and oxalate oxidase (OXO) was studied in barley (Hordeum vulgare L. cv. Alfor) root tips. SOD appeared to be involved in detoxification mechanisms at highly toxic Al doses and after long Al exposure. POD and APX, H2O2 consuming enzymes, were activated following similar patterns of expression and exhibiting significant correlation between their elevated activities and root growth inhibition. The signalling role of NADH-POD in oxidative stress seems to be more probable than that of OXO, which might be involved in Al toxicity mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asada, K.: Ascorbate peroxidase —a hydrogen peroxide scavenging enzyme in plants.-Physiol. Plant. 85: 235-241, 1992.

    Article  CAS  Google Scholar 

  • Baker, C.J., Mock, N.M.: An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue.-Plant Cell Tissue Organ Cult. 39: 7-12, 1994.

    Article  Google Scholar 

  • Beyer, W.F., Fridovich, I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions.-Anal. Biochem. 161: 559-566, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak, I., Horst, W.J.: Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max).-Physiol. Plant. 83: 463-468, 1991.

    Article  CAS  Google Scholar 

  • Chance, B., Maehly, A.C.: Assay of catalases and peroxidases.-In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Vol. 2. Pp. 764-775. Academic Press, New York 1955.

    Google Scholar 

  • Chen, G.-X., Asada, K.: Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties.-Plant Cell Physiol. 30: 987-998, 1989.

    CAS  Google Scholar 

  • Chen, S., Schopfer, P.: Hydroxyl-radical production in physiological reactions. A novel function of peroxidase.-Eur. J. Biochem. 260: 726-735, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Ortega, R., Cushman, J.C., Ownby, J.D.: cDNA clones encoding 1,3-β-glucanase, and fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots.-Plant Physiol. 114: 1453-1460, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Delisle, G., Champoux, M., Houde, M.: Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots.-Plant Cell Physiol. 42: 324-333, 2001.

    Article  PubMed  CAS  Google Scholar 

  • De Marco, A., Roubelakis-Angelakis, K.A.: The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts.-Plant Physiol. 110: 137-145, 1996.

    PubMed  CAS  Google Scholar 

  • Dumas, B., Freyssinet, G., Pallet, K.E.: Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings.-Plant Physiol. 107: 1091-1096, 1995.

    PubMed  CAS  Google Scholar 

  • Ezaki, B., Gardner, R.C., Ezaki, Y., Matsumoto, H.: Expression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress.-Plant Physiol. 122: 657-665, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ezaki, B., Koyanagi, M., Gardner, R.C., Matsumoto, H.: Nucleotide sequence of a cDNA for GDP dissociation inhibitor (GDI) which is induced by aluminum (Al) ion stress in tobacco cell culture.-Plant Physiol. 115: 314, 1997.

    Google Scholar 

  • Ezaki, B., Tsugita, S., Matsumoto, H.: Expression of a moderately anionic peroxidase is induced by aluminium treatment in tobacco cells: Possible involvement of peroxidase isozymes in aluminium ion stress.-Physiol. Plant. 96: 21-28, 1996.

    Article  CAS  Google Scholar 

  • Ezaki, B., Yamamoto, Y., Matsumoto, H.: Cloning and sequencing of the cDNAs induced by aluminium treatment and Pi starvation in cultured tobacco cells.-Physiol. Plant. 93: 11-18, 1995.

    Article  CAS  Google Scholar 

  • Hamilton, C.A., Good, A.G., Taylor, G.J.: Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat.-Plant Physiol. 125: 2068-2077, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hegedüs, A., Erdei, S., Horváth, G.: Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress.-Plant Sci. 160: 1085-1093, 2001.

    Article  PubMed  Google Scholar 

  • Horst, W.J.: The role of the apoplast in aluminium toxicity and resistance of higher plants: a review.-Z. Pflanzenernähr. Bodenk. 158: 419-428, 1995.

    CAS  Google Scholar 

  • Hurkman, W.J., Tanaka, C.K.: Effect of salt stress on germin gene expression in barley roots.-Plant Physiol. 110: 971-977, 1996.

    PubMed  CAS  Google Scholar 

  • Jan, F., Yamashita, K., Matsumoto, H., Maeda, M.: Protein and peroxidase changes in various root-cell fractions of two upland rice cultivars differing in Al tolerance.-Environ. exp. Bot. 46: 141-146, 2001.

    Article  CAS  Google Scholar 

  • Jones, D.L., Kochian, L.V.: Aluminium inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots: a role in aluminium toxicity.-Plant Cell 7: 1913-1922, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Lagrimini, L.M., Gingas, V., Finger, F., Rothstein, S., Liu, T.Y.: Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase.-Plant Physiol. 114: 1187-1196, 1997.

    PubMed  CAS  Google Scholar 

  • Lee, D.H., Kim, Y.S., Lee, C.B.: The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.).-J. Plant Physiol. 158: 737-745, 2001.

    Article  CAS  Google Scholar 

  • Lin, C.C., Kao, C.H.: Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings.-J. Plant Physiol. 158: 667-671, 2001.

    Article  CAS  Google Scholar 

  • Ma, J.F., Hiradate, S., Matsumoto, H.: High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally.-Plant Physiol. 117: 753-759, 1998.

    Article  CAS  Google Scholar 

  • Ma, J.F., Hiradate, S., Nomoto, K., Iwashita, T., Matsumoto, H.: Internal detoxification mechanism of Al in Hydrangea. Identification of Al form in the leaves.-Plant Physiol. 113: 1033-1039, 1997.

    PubMed  CAS  Google Scholar 

  • Mäder, M., Ungemach, J., Schloss, P.: The role of peroxidase isozyme groups of Nicotiana tabacum in hydrogen peroxide formation.-Planta 147: 467-470, 1980.

    Article  Google Scholar 

  • Mittal, R., Dubey, R.S.: Behaviour of peroxidases in rice: Change in enzyme activity and isoforms in relation to salt tolerance.-Plant Physiol. Biochem. 29: 31-40, 1991.

    CAS  Google Scholar 

  • Mizuno, M., Kamei, M., Tsuchida, H.: Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low-temperature storage.-Biochem. mol. Biol. Int. 44: 717-726, 1988.

    Google Scholar 

  • Peixoto, P.H.P., Cambraia, J., SantAnna, R., Mosquim, P.R., Moreira, M.A.: Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum.-Rev. bras. Fisiol. veg. 11(3): 137-143, 1999.

    CAS  Google Scholar 

  • Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C.: Aluminum induces oxidative stress genes in Arabidopsis thaliana.-Plant Physiol. 116: 409-418, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, P.R., Delhaize, E., Randall, P.J.: Characterization of Al-stimulated efflux of malate from apices of Al-tolerant wheat roots.-Planta 196: 103-110, 1995.

    Article  CAS  Google Scholar 

  • Siegel, B.Z.: Plant peroxidases —an organismic perspective.-Plant Growth Regul. 12: 303-312, 1993.

    Article  CAS  Google Scholar 

  • Snowden, K.C., Richards, K.D., Gardner, R.C.: Aluminum-induced genes. Induction by toxic metals, low calcium, and wounding and pattern of expression in root tips.-Plant Physiol. 107: 341-348, 1995.

    PubMed  CAS  Google Scholar 

  • Souza, I.R.P., MacAdam, J.W.: Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays L.) leaf blades —a transient increase in apoplastic peroxidase activity precedes cessation of cell elongation.-J. exp. Bot. 52: 1673-1682, 2001.

    Article  PubMed  Google Scholar 

  • Zhang, Z., Collinge, D.B., Thordal-Christensen, H.: Germin-like oxalate oxidase, a H2O2 producing enzyme, accumulates in barley attacked by the powdery mildew fungus.-Plant J. 8: 139-145, 1995.

    Article  CAS  Google Scholar 

  • Zhang, Z., Yang, J., Collinge, D.B., Thordal-Christensen, H.: Ethanol increases sensitivity of oxalate oxidase assays and facilitates direct activity staining in SDS gels.-Plant mol. Biol. Rep. 14: 266-272, 1996.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Šimonovičová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimonovičová, M., Tamás, L., Huttová, J. et al. Effect of Aluminium on Oxidative Stress Related Enzymes Activities in Barley Roots. Biologia Plantarum 48, 261–266 (2004). https://doi.org/10.1023/B:BIOP.0000033454.95515.8a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOP.0000033454.95515.8a

Navigation