Skip to main content
Log in

The Regulation of the Plasma Membrane Redox System and H+-transport in Adaptation of Reed Ecotypes to Their Habitats

  • Published:
Biologia Plantarum

Abstract

The redox system and H+-transport activities in the plasma membranes from two ecotypes of reed (Phragmites communis Trin.), named swamp reed (SR) and dune reed (DR) according to their habitats, were investigated. Compared to the SR, the DR possessed the very high rates of NADH oxidation and Fe(CN)6 3− and EDTA-Fe3+ reduction when NADH was taken as the electron donor. As NADPH was an electron donor, the rate of NADPH oxidation was also significantly higher in the DR than that in the SR. In addition, the H+-transport activity in the plasma membranes was also significantly higher in the DR than in the SR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askwith, C., Kaplan, J.: Iron transport in yeast: The involvement of an iron reductase and oxidase.-In: Asard, H., Bêrczi, A., Caubergs, R.J. (ed.): Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease. Pp. 157-177. Kluwer Academic Publishers, Dordrecht 1998.

    Google Scholar 

  • Barr, R.: The possible role of redox-associated protons in growth of plant cells.-J. Bioenerg. Biomembr. 23: 443-450, 1991.

    Google Scholar 

  • Barr, R., Craig, T.A., Crane, F.L.: Transmembrane ferricyanide reduction in carrot cells.-Biochim. biophys. Acta 812: 49-54, 1985.

    Google Scholar 

  • Bêrczi, A., Møller, I.M.: Redox enzymes in the plant plasma membrane and their possible roles.-Plant Cell Environ. 23: 1287-1302, 2000.

    Google Scholar 

  • Böttger, M., Crane, F.L., Barr, R.: Physiological aspects of trans plasma membrane electron transport in roots and cultured carrot cells.-In: Crane, F., Morrê, D., Löw, H. (ed.): Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport. Vol. 2. Plants. Pp. 207-306. CRC Press, Boca Raton 1991.

    Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.

    Google Scholar 

  • Chen, K.M., Gong, H.J., Chen, G.C., Wang, S.M., Zhang, C.L.: Up-regulation of glutathione metabolism and changes of redox status involved in adaptation of reed (Phragmites communis) ecotypes to drought-prone and saline habitats.-J. Plant Physiol. 160: 293-301, 2003.

    Google Scholar 

  • Cheng, Y.F., Pu, T.L., Xue, Y.B., Zhang, C.L.: PcTGD, a highly expressed gene in stem, is related to water stress in reed (Phragmites communis Trin.).-Chinese Sci. Bull. 46: 1-5, 2001.

    Google Scholar 

  • Crane, F.L., Sun, I.L., Clark, M.G., Grebing, C., Löw, H.: Transplasma-membrane redox system in growth and development.-Biochim. biophys. Acta 811: 233-264, 1985.

    Google Scholar 

  • Feng, G.G., Tang, Y.Q.: Data Analysis Platform.-Chinese Agriculture Press, Beijing 1997

    Google Scholar 

  • Gong, Y.H., Gao, J.F., Wang, J.R., Jing, J.H.: The redox system in plasma membrane of mungbean seedling hypocotyls and its response to water stress.-Agr. Res. arid Areas 17: 78-82, 1999.

    Google Scholar 

  • Grabov, A.H., Felle, H., Böttger, M.: Modulation of the plasma membrane electron transfer system in root cells of Limnobium stoloniferum by external pH.-J. exp. Bot. 44: 725-730, 1993.

    Google Scholar 

  • Haslam, S.M.: Variation of population types in Phragmites communis Trin.-Ann. Bot. 34: 147-158, 1970.

    Google Scholar 

  • Klobus, G., Buczek, J.: The role of plasma membrane oxidoreductase activity in proton transport.-J. Plant Physiol. 146: 103-107, 1995.

    Google Scholar 

  • Kochian, L.V., Lucas, W.J.: Do plasmalemma oxidoreductases play a role in plant mineral ion transport?-In: Crane, F.L., Morrê, D.J., Löw, H.E. (ed.): Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport. Vol. 2. Plants. Pp. 189-205. CRC Press, Boca Raton 1991.

    Google Scholar 

  • Matoh, T., Matsushita, N., Takahashi, E.: Salt tolerance of the reed plant Phragmites communis.-Physiol. Plant. 72: 8-14, 1988.

    Google Scholar 

  • Møller, I.M., Crane, F.L.: Redox systems of the plasma membrane.-In: Larsson, C., Møller, I.M. (ed.): The Plant Plasma Membrane -Structure, Function and Molecular Biology. Pp. 93-126. Springer-Verlag, Heidelberg 1990.

    Google Scholar 

  • Morsomme, P., Boutry, M.: The plant plasma membrane H+-ATPase: structure, function and regulation.-Biochim. biophys. Acta 1465: 1-16, 2000.

    Google Scholar 

  • Navas, P., Jos, M.V., Córdoba, F.: Ascorbate function at the plasma membrane.-Biochim. biophys. Acta 1197: 1-13, 1994.

    Google Scholar 

  • Qiu, Q.S.: Characterization of p-nitrophenyl phosphate hydrolysis by plasma membrane H+-ATPase from soybean hypocotyls.-J. Plant Physiol. 154: 628-633, 1999.

    Google Scholar 

  • Qiu, Q.S., Li, L., Liang, H.G., Jiao, X.Z.: Effect of water stress on the redox system of the plasma membrane of wheat roots.-Acta phytophysiol. sin. 20: 145-151, 1994.

    Google Scholar 

  • Qiu, Q.S., Sun, X.F.: The influence of extracellular-side Ca2+ on the activity of the plasma membrane H+-ATPase from wheat roots.-Aust. J. Plant Physiol. 25: 923-928, 1998.

    Google Scholar 

  • Rubinstein, B., Luster, D.G.: Plasma membrane redox activity: components and role in plant processes.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 131-155, 1993.

    Google Scholar 

  • Serrano, R.: Structure and function of plasma membrane ATPase.-Annu. Rev. Plant Physiol. Plant mol. Biol. 40: 61-94, 1989.

    Google Scholar 

  • Szabó-Nagy, A., Erdei, L.: The effects of iron deficiency on the ATPase and ferricyanide reductase activities of plasma membrane purified by phase partitioning from sunflower roots.-J. Plant Physiol. 142: 579-584, 1993.

    Google Scholar 

  • Wang, H.L., Hao, L.M., Wen, J.Q., Zhang, C.L., Liang, H.G.: Differential expression of photosynthesis-related genes of reed ecotypes in response to drought and saline habitats.-Photosynthetica 35: 61-69, 1998.

    Google Scholar 

  • Widell, S., Larsson, C.: A critical evaluation of markers used in plasma membrane purification.-In: Larsson, C., Møller, I.M., (ed.): The Plant Plasma Membrane. Pp. 16-43. Springer-Verlag, Berlin 1990.

    Google Scholar 

  • Zhao, H.C., Wang, B.C., Cai, S.X., Sakanishi, A.: Effect of water stress on redox system in plasma membrane of mature leaf of young P. betulaefolia Bqe.-Colloids Surfaces B: Biointerfaces 18: 99-103, 2000.

    Google Scholar 

  • Zhao, S., Colombo, S.J., Blumwald, E.: The induction of freezing tolerance in jack pine seedlings: The role of root plasma membrane H+-ATPase and redox activities.-Physiol. Plant. 93: 55-60, 1995.

    Google Scholar 

  • Zheng, W.J., Zheng, X.P., Zhang, C.L.: A survey of photosynthetic carbon metabolism in 4 ecotypes of Phragmites australis in northwest China: Leaf anatomy, ultrastructure, and activities of ribulose 1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase and glycollate oxidase.-Physiol. Plant. 110: 201-208, 2000.

    Google Scholar 

  • Zhu, X.Y., Chen, G.C., Zhang, C.L.: Photosynthetic electron transport, photophosphorylation, and antioxidants in two ecotypes of reed (Phragmites communis Trin.) from different habitats.-Photosynthetica 39: 183-189, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-M. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, KM., Gong, HJ., Wang, SM. et al. The Regulation of the Plasma Membrane Redox System and H+-transport in Adaptation of Reed Ecotypes to Their Habitats. Biologia Plantarum 48, 87–92 (2004). https://doi.org/10.1023/B:BIOP.0000024280.36595.99

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOP.0000024280.36595.99

Navigation