Skip to main content
Log in

Monitoring of cobalt(II) uptake and transformation in cells of the plant-associated soil bacterium Azospirillum brasilense using emission Mössbauer spectroscopy

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Interaction of cobalt(II) at micromolar concentrations with live cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense (strain Sp245) and further transformations of the metal cation were monitored using 57Co emission Mössbauer spectroscopy (EMS). Cell suspensions of the bacterial culture (2.4×108 cells ml−1) were doped with radioactive 57CoCl2 (1 mCi; final concentration 2×10−6 M 57Co2+), kept under physiological conditions for various periods of time (from 2 min up to 1 hour) and then rapidly frozen in liquid nitrogen. Analysis of emission Mössbauer spectra of the frozen aqueous suspensions of the bacterial cell samples shows that the primary absorption of cobalt(II) at micromolar concentrations by the bacterial cells is rapid and virtually complete, giving at least two major forms of cobalt(II) species bound to the cells. Within an hour, the metal is involved in further metabolic transformations reflected by changes occurring in the spectra. The Mössbauer parameters calculated from the EMS data by statistical treatment were different for suspensions of live and dead (thermally killed) bacterial cells that had been in contact with 57Co2+ for 1 h, as well as for the cell-free culture medium containing the same concentration of 57Co2+. Chemical after-effects of the nuclear transition (57Co →57Fe), which provide additional information on the chemical environment of metal ions, are also considered. The data presented demonstrate that EMS is a valuable tool for monitoring the chemical state of cobalt species in biological matter providing information at the atomic level in the course of its uptake and/or metabolic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanasov MI, Babeshkin AM, Kulikov LA, Perfiliev YD. 1985 Chemical consequences of nuclear transformations (E.C., CIT) and stabilizing electron chemistry. J. Radioanal. Nucl. Chem. Lett. 93, 37-42.

    Google Scholar 

  • Ambe S. 1990 Mössbauer study of cobalt and iron in the cyanobacterium (blue green alga). Hyperfine Interact. 58 2329-2336.

    Google Scholar 

  • Ambe S. 1994 Mössbauer study of iron in soybean hulls and cotyledons. J. Agric. Food Chem. 42, 262-267.

    Google Scholar 

  • Antonyuk LP, Smirnova VE, Kamnev AA, Serebrennikova OB, Vanoni MA, Zanetti G, Kudelina IA, Sokolov OI and Ignatov VV. 2001 Influence of divalent cations on the catalytic properties and secondary structure of unadenylylated glutamine synthetase from Azospirillum brasilense. BioMetals 14, 13-22.

    Google Scholar 

  • Baggio-Saitovitch E., Friedt JM, Danon J. 1972. Mössbauer study of irradiated iron chelates and chemical consequences of 57Co electron capture in complex ligand compounds. J. Chem. Phys. 56, 1269-1274.

    Google Scholar 

  • Balogh GT, Illés J, Székely Z, Forrai E, Gere A. 2003 Effect of different metal ions on the oxidative damage and antioxidant capacity of hyaluronic acid. Arch. Biochem. Biophys. 410, 76-82.

    Google Scholar 

  • Bespalova LA, Antonyuk LP, Ignatov VV. 1999 Azospirillum brasilense glutamine synthetase: influence of the activating metal ions on the enzyme properties. BioMetals 12, 115-121.

    Google Scholar 

  • Bettmer J. 2002 Elemental speciation. Anal. Bioanal. Chem. 372, 33-34.

    Google Scholar 

  • Beveridge TJ, Fyfe WS. 1985. Metal fixation by bacterial cell walls. Can. J. Earth Sci. 22 1893-1898.

    Google Scholar 

  • Burdman S, Jurkevitch E, Schwartsburd B, Okon Y. 1999 Involvement of outer-membrane proteins in the aggregation of Azospirillum brasilense. Microbiology 145, 1145-1152.

    Google Scholar 

  • Burdman S, Jurkevitch E, Soria-Díaz ME, Gil Serrano AM, Okon Y. 2000 Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol. Lett. 189, 259-264.

    Google Scholar 

  • Burdman S, Dulguerova G, Okon Y, Jurkevitch E. 2001 Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol. Plant-Microbe Interact. 14, 555-561.

    Google Scholar 

  • Castellanos T, Ascencio F, Bashan Y. 1998 Cell-surface lectins of Azospirillum spp. Curr. Microbiol. 36, 241-244.

    Google Scholar 

  • Dies DH. 1999 Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51, 730-750.

    Google Scholar 

  • Ehrlich HL. 1997 Microbes and metals. Appl. Microbiol. Biotechnol. 48, 687-692.

    Google Scholar 

  • Garcia-Gil J, Borrego C. 1997 Sorption of metals by Chlorobium spp. Microbiologia SEM 13, 445-452.

    Google Scholar 

  • Ignatov OV, Kamnev AA, Markina LN, Antonyuk LP, Colina M, Ignatov VV. 2001 Electrooptical properties of cells of the soil nitrogen-fixing bacterium Azospirillum brasilense: effects of copper ions. Appl. Biochem. Microbiol. (Moscow) 37, 219-223.

    Google Scholar 

  • Ivanov AY, Gavrjushkin AV, Khassanova LA, Siunova TV, Khassanova ZM, Collery P, Choisy C, Etienne J-C. 1998 Mechanism of resistance to cobalt in some Pseudomonas strains. In: Ph. Collery, P. Brätter, V. Negretti de Brätter, L. Khassanova and J.-C. Etienne (eds.) Metal Ions in Biology and Medicine, Vol. 5, John Libbey eurotext, Paris, p. 172-178.

    Google Scholar 

  • Ivanov AY, Gavryushkin AV, Siunova TV, Khassanova LA, Khasanova ZM. 1999 Investigation of heavy metal resistance of some Pseudomonas strains. Microbiology (Moscow) 68, 313-320.

    Google Scholar 

  • Kamnev AA, Renou-Gonnord M-F, Antonyuk LP, Colina M, Chernyshev AV, Frolov I, Ignatov VV. 1997 Spectroscopic characterization of the uptake of essential and xenobiotic metal cations in cells of the soil bacterium Azospirillum brasilense. Biochem. Mol. Biol. Int. 41, 123-130.

    Google Scholar 

  • Kamnev AA, Risti? M., Antonyuk LP, Chernyshev AV, Ignatov VV. 1997. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense. J. Mol. Struct. 408/409, 201-205.

    Google Scholar 

  • Kamnev AA, Antonyuk LP, Smirnova VE, Serebrennikova OB, Kilikov LA, Perfiliev Y.D. 2002 Trace cobalt speciation in bacteria and at enzymic active sites using emission Mössbauer spectroscopy. Anal. Bioanal. Chem. 372, 431-435.

    Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H-J, Heron G. 2001 Biogeochemistry of landfill leachate plumes. Appl. Geochem. 16, 659-718.

    Google Scholar 

  • Kamnev AA, Antonyuk LP, Matora LY, Serebrennikova OB, Sumaroka MV, Colina M, Renou-Gonnord M-F, Ignatov VV. 1999 Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense. J. Mol. Struct. 480-481, 387-393.

    Google Scholar 

  • Kamnev AA, Kuzmann E, Perfiliev YD, Vankó G and Vértes A. 1999 Mössbauer and FTIR spectroscopic studies of iron anthranilates: coordination, structure and some ecological aspects of iron complexation. J. Mol. Struct. 482-483, 703-711.

    Google Scholar 

  • Kamnev AA, Tarantilis PA, Antonyuk LP, Bespalova LA, Polissiou MG, Colina M, Gardiner PHE and Ignatov VV. 2001 Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7. J. Mol. Struct. 563-564, 199-207.

    Google Scholar 

  • Kamnev AA, Antonyuk LP, Tugarova AV, Tarantilis PA, Polissiou MG, Gardiner PHE. 2002 Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7. J. Mol. Struct. 610, 127-131.

    Google Scholar 

  • Kamnev AA, Antonyuk LP, Smirnova VE, Kulikov LA, Perfiliev YD, Kudelina IA, Kuzmann E, Vértes A. 2004. Structural characterization of glutamine synthetase from Azospirillum brasilense. Biopolymers (Biospectroscopy) 74, in press.

  • Kilcoyne SH, Bentley PM, Thongbai P, Gordon DC, Goodman BA. 2000 The application of 57Fe Mössbauer spectroscopy in the investigation of iron uptake and translocation in plants. Nucl. Instr. Methods Phys. Res. B, 160, 157-166.

    Google Scholar 

  • Kirchhof G, Schloter M, Aßmus B, Hartmann A. 1997 Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biol. Biochem. 29, 853-862.

    Google Scholar 

  • Kuzmann E, Nagy S, Vértes A. 2003 Critical review of analytical applications of Mössbauer spectroscopy illustrated by mineralogical and geological examples (IUPAC Technical Report). Pure Appl. Chem. 75, 801-858.

    Google Scholar 

  • Langley S, Beveridge TJ. 1999 Effect of O-side-chain-lipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol. 65, 489-498.

    Google Scholar 

  • Lobinski R. 2001 Characterizing speciation of trace elements in the chemistry of life. Fresenius J. Anal. Chem. 369, 113-114.

    Google Scholar 

  • Lovely DR, Coates JD. 2000 Novel forms of anaerobic respiration of environmental relevance. Curr. Opin. Microbiol. 3, 252-256.

    Google Scholar 

  • Oshtrakh MI. 1999 Mössbauer spectroscopy of iron-containing bio-molecules and model compounds in biomedical research. J. Mol. Struct. 480-481, 109-120.

    Google Scholar 

  • Oshtrakh MI. 2004 Mössbauer spectroscopy in biomedical research. Faraday Discuss. in press (DOI: 10.1039/b304906j).

  • Oshtrakh MI. 2004 Study of the relationship of small variations of the molecular structure and the iron state in iron containing proteins by Mössbauer spectroscopy: biomedical approach. Spectrochim. Acta 60: 217-234.

    Google Scholar 

  • Sar P, Kazy SK, Asthana RK, Singh SP. 1999 Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. Int. Biodeterior. Biodegr. 44, 101-110.

    Google Scholar 

  • Skvortsov IM, Ignatov VV. 1998 Extracellular polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS Microbiol. Lett. 165, 223-229.

    Google Scholar 

  • Steenhoudt O, Vanderleyden J. 2000 Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24, 487-506.

    Google Scholar 

  • Tugarova AV, Kamnev AA, Antonyuk LP, Tarantilis PA, Polissiou MG. 2002 Effects of heavy metals on the plant-associated bacterium Azospirillum brasilense: endophytic and non-endophytic strains. In: L. Khassanova, P. Collery, I. Maymard, Z. Khassanova and J.-C. Etienne (eds.) Metal Ions in Biology and Medicine, Vol. 7, John Libbey Eurotext, Paris, p. 237-241.

    Google Scholar 

  • Vainshtein M, Suzina N, Kudryashova E, Ariskina E. 2002 New magnet-sensitive structures in bacterial and archaeal cells. Biol. Cell 94, 29-35.

    Google Scholar 

  • Vértes A, Korecz L and Burger K. 1979 Mössbauer Spectroscopy (Studies in Physical and Theoretical Chemistry, Vol. 5), Amsterdam, Elsevier, 432 pp.

    Google Scholar 

  • Vértes A, Nagy DL (eds). 1998 Mössbauer Spectroscopy of Frozen Solutions, Akad. Kiadó, Budapest, 1990, ch. 6 (Russian edn., Yu.D. Perfiliev (ed.), Mir, Moscow, p. 271-293).

    Google Scholar 

  • Volesky B (ed.). 1990 Biosorption of Heavy Metals, CRC Press, Boca Raton, FL, p. 7-44.

    Google Scholar 

  • Weise H-P, Görner W, Hedrich M. 2001 Determination of elements by nuclear analytical methods. Fresenius J. Anal. Chem. 369, 8-14.

    Google Scholar 

  • Williams RJP, FraÚsto de Silva JJR. 2000 The distribution of elements in cells. Coord. Chem. Rev. 200-202, 247-348.

    Google Scholar 

  • Williams RJP. 2001 Chemical selection of elements by cells. Coord. Chem. Rev. 216-217, 583-595.

    Google Scholar 

  • Wojciechowski CL, Cardia JP, Kantrowitz ER. 2002 Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity. Protein Sci. 11, 903-911.

    Google Scholar 

  • Yegorenkova IV, Konnova SA, Sachuk VN, Ignatov VV. 2001 Azospirillum brasilense colonisation of wheat roots and the role of lectin-carbohydrate interactions in bacterial adsorption and root-hair deformation. Plant Soil 231, 275-282.

    Google Scholar 

  • Zachara JM, Fredrickson JK, Smith SC, Gassman PL. 2001 Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium. Geochim. Cosmochim. Acta 65, 75-93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Kamnev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamnev, A.A., Antonyuk, L.P., Kulikov, L.A. et al. Monitoring of cobalt(II) uptake and transformation in cells of the plant-associated soil bacterium Azospirillum brasilense using emission Mössbauer spectroscopy. Biometals 17, 457–466 (2004). https://doi.org/10.1023/B:BIOM.0000029442.72234.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOM.0000029442.72234.2e

Navigation