Skip to main content

Substrate, climate, and land use controls over soil N dynamics and N-oxide emissions in Borneo

Abstract

Nitrogen (N) enrichment of tropical ecosystems is likely to increase with rapid industrial and agricultural development, but the ecological consequences of N additions in these systems are not well understood. We measured soil N- oxide emissions and N transformations in primary rain forest ecosystems at four elevations and across two substrate types on Mt. Kinabalu, Borneo, before and after short-term experimental N additions. We also measured N pools and fluxes across a land use gradient of primary forest, burned secondary forest, and fertilized agriculture. Background soil N2O and NO emissions in primary forest decreased with elevation, and soils derived from sedimentary substrates had larger pools of inorganic N, rates of nitrification, and N-oxide fluxes than ultrabasic soils when there were significant differences between substrate types. N-oxide emissions after N additions and background rates of nitrification were low in all soils derived from ultrabasic substrates compared to sedimentary substrates, even at lowland sites supporting, diverse Dipterocarp forests growing on morphologically similar Oxisols. Rates of potential nitrification were good predictors of N-oxide emissions after N additions. N2O and NO fluxes were largest at low elevations and on sedimentary-derived soils compared to ultrabasic-derived soils, even at the smallest addition of N, 15 kg N  ha−1. Because current methods of soil classification do not explicitly characterize a number of soil chemical properties important to nutrient cycling, the use of soil maps to extrapolate biogeochemical processes to the region or globe may be limited in its accuracy and usefulness. In agricultural systems, management practices were more important than substrate type in controlling N-oxide emissions and soil N cycling. N-oxide fluxes from agricultural fields were more than an order of magnitude greater than from primary forests on the same substrate type and at the same elevation. As primary forests are cleared for intensive agriculture, soil N2O and NO emissions are likely to far exceed those from the most N-saturated tropical forest ecosystems. This study highlights the inter-dependence of climate, substrate age, N deposition, and land-use practices determining N cycling and N-oxide emissions in humid tropical regions.

This is a preview of subscription content, access via your institution.

References

  • Aber J., McDowell W., Nadelhoer K., Magill A., Berntson G., Kamakea M., McNulty S., Currie W., Rustad L.and Fernandez I.1998.Nitrogen saturation in temperate forests:hypotheses revisited. Bioscience 48: 921-934.

    Google Scholar 

  • Ågren G.I.and Bosatta E.1988.Nitrogen saturation of terrestrial ecosystems. Environ.Poll. 54: 185-197.

    Google Scholar 

  • Aiba S.and Kitayama K.1999.Structure, composition, and species diversity in an altitude-substrate matrix of rain forest tree communities on Mt.Kinabalu, Borneo. Plant Ecol. 140: 139-157.

    Google Scholar 

  • Asner G., Townsend A., Riley W., Matson P., Ne.J.and Cleveland C.2000.Physical and biogeochemical controls of terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry 54: 1-39.

    Google Scholar 

  • Baillie I.C., Evangelista P.M.and Inciong N.B.2000.Differentiation of upland soils on the Palawan ophiolitic complex, Philippines.Catena 39: 283-299.

    Google Scholar 

  • Bruijnzeel L.A., Waterloo M.J., Proctor J.and Kuiters A.T.1993.Hydrological observations in montane rain-forests on Gunung Silam, Sabah, Malaysia, with special reference to the Masse-nerhebung effect. J.Ecol. 81:145-167.

    Google Scholar 

  • Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley A.N.and Smith V.H.1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol.App. 8:559-568.

    Google Scholar 

  • Chiarucci A.1996.Species diversity in plant communities on ultrama c soils in relation to pine afforestation. J.Veg.Sci. 7:57-62.

    Google Scholar 

  • Chiarucci A., Maccherini S., Bonini I.and DeDominicis V.1999.Effects of nutrient addition on community productivity and structure of serpentine vegetation. Plant Biol. 1:21-126.

    Google Scholar 

  • Cleveland C., Townsend A.R.and Schmidt S.K.2002.Phosphorus limitation of microbial pro-cesses in moist tropical forests:evidence from short-term laboratory incubations and eld studies. Ecosystems 5: 680-691.

    Google Scholar 

  • Cuevas E.and Medina E.1988.Nutrient dynamics within Amazonian forests:ne root growth, nutrient availability, and leaf litter decomposition. Oecologia 76: 222-235.

    Google Scholar 

  • Davidson E.A.1993.Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil.In: Oremland R.S.(ed)Biogeochemistry of Global Change:Radiatively Active Trace Gases. Chapman & Hall, London, pp.369-386

    Google Scholar 

  • Davidson E.A., Keller M., Erickson H.E., Verchot L.V.and Veldkamp E.2000.Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50: 667-680.

    Google Scholar 

  • DeBoer W.and Kowalchuk G.A.2001.Nitrication in acid soils:micro-organisms and mechanisms. Soil Biol.Biochem. 33: 853-866.

    Google Scholar 

  • Degrange V., Couteaux M.M., Anderson J.M., Berg M.P.and Lensi R.1998.Nitrication and occurrence of Nitrobacter by MPN-PCR in low and high nitrifying coniferous forest soils. Plant Soil 198: 201-208.

    Google Scholar 

  • Erickson H., Keller M.and Davidson E.A.2001.Nitrogen oxide.uxes and nitrogen cycling during postagricultural succession and forest fertilization in the humid tropics. Ecosystems 4: 67-84.

    Google Scholar 

  • FAO 2001.FAOSTAT.Food and Agricultural Organization, United Nations http://www.apps. fao.org/.

    Google Scholar 

  • Firestone M.K.and Davidson E.A.1989.Microbiological basis of NO and N2 O production and consumption in soil.In: Andreae M.O.and Schimel D.S.(eds)Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. John Wiley & Sons Ltd., New York, pp.7-21

    Google Scholar 

  • Fowler D., Flechard C., Skiba U., Coyle M.and Cape J.N.1998.The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition. New Phytol. 139:11-23.

    Google Scholar 

  • Galloway J.N., Levy II H.and Kasibhatla P.S.1994.Year 2020:consequences of population growth and development on the deposition of oxidized nitrogen. Ambio 23:120-123.

    Google Scholar 

  • Hall S.J.and Matson P.A.1999.Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature 400:152-155.

    Google Scholar 

  • Hall S.J.and Matson P.A.2003.Nutrient status of tropical rain forests in.uences soil N dynamics after N additions. Ecol.Monogr.73:107-129.

    Google Scholar 

  • Hall S.J., Matson P.A.and Roth P.M.1996.NO x emissions from soil:implications for air quality modeling in agricultural regions. Ann.Rev.Energy Environ. 21:311-346.

    Google Scholar 

  • Hart S.C., Stark J.M., Davidson E.A.and Firestone M.K.1994.Nitrogen mineralization, immobilization, and nitri cation.In:SSSA.(ed) Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties.Soil Science Society of America, Madison, WI, pp.985-1018

    Google Scholar 

  • Herbert D.A.and Fownes J.H.1995.Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. Biogeochemistry 29:223-235.

    Google Scholar 

  • Holland E.A., Braswell B.H., Lamarque J.F., Townsend A., Sulzman J., Müller J.F., Dentener F., Brasseur G., Levy II H., Penner J.E.and Roelofs G.J.1997.Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J.Geophys.Res. 102:15849-15866.

    Google Scholar 

  • IPCC 1996.ClimateChange1995:TheScience of Climate Change.CambridgeUniversity Press, Cambridge.

    Google Scholar 

  • IPCC 1997.Guidelines for National Greenhouse Gas Inventories;Agriculture:nitrous oxide from agricultural soils and manure management. Intergovernmental Panel on Climate Change, Paris, France.

  • Kaiser K.and Zech W.1998.Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulfate. Soil Sci.Soc.Am.J. 62:129-136.

    Google Scholar 

  • Kalbitz K., Solinger S., Park J.H., Michalzik B.and Matzner E.2000.Controls on the dynamics of dissolved organic matter in soils:a review. Soil Sci. 165: 277-304.

    Google Scholar 

  • Keller M., Veldkamp E., Weitz A.M.and Reiners W.A.1993.Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica. Nature 365: 244-246.

    Google Scholar 

  • Kitayama K.and Aiba S.2002.Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo.J. Ecol. 90: 37-51.

    Google Scholar 

  • Kitayama K., Aiba S., Majalap-Lee N.and Ohsawa M.1998.Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on Mt.Kinabalu, Borneo.Ecol. Res. 13: 301-312.

    Google Scholar 

  • Kitayama K., Lakim M.and Wahab M.Z.1999.Climatepro leof Mount Kinabalu during late 1995-early 1998 with special reference to the 1998 drought. Sabah Parks Nat.J. 2:85-100.

    Google Scholar 

  • Kitayama K., Majalap-Lee N.and Aiba S.2000.Soil phosphorus fractionation and phosphorus e.ciencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo.Oecologia 123: 342-349.

    Google Scholar 

  • Kitayama K., Aiba S., Takyu M., Majalap N.and Wagai R.2003.Soil phosphorus fractionation and phosphorus-use effciency of a Bornean tropical montane rain forest during soil ageing with podozolization. Ecosystems (submitted).

  • Lelieveld J.and Dentener F.J.2000.What controls tropospheric ozone? J.Geophys.Res. 105: 3531-3551.

    Google Scholar 

  • Likens G.E., Driscoll C.T.and Buso D.C.1996.Long-term effects of acid rain:response and recovery of a forest ecosystem. Science 272: 244-246.

    Google Scholar 

  • Mansberg L.and Wentworth T.R.1984.Vegetation and soils of a serpentine barren in western North Carolina. Bull.Torr.Bot.Cl. 111: 273-286.

    Google Scholar 

  • Matson P.A.and Vitousek P.M.1990.Ecosystem approach to the global nitrous oxide budget. Bioscience 40: 667-672.

    Google Scholar 

  • Matson P.A., Billow C., Hall S.and Zachariassen J.1996.Fertilization practices and soil variations control nitrogen oxide emissions from tropical sugar cane. J.Geophys.Res. 101:18533-18545.

    Google Scholar 

  • Matson P.A., Naylor R.and Ortiz-Monasterio I.1998.Integration of environmental, agronomic, and economic aspects of fertilizer management. Science 280: 112.

    Google Scholar 

  • Matson P.A., McDowell W.H., Townsend A.R.and Vitousek P.M.1999.The globalization of N deposition:ecosystem consequences in tropical environments. Biogeochemistry 46:152-155.

    Google Scholar 

  • Matson P., Lohse K.and Hall S.J.2002.The globalization of nitrogen:consequences for terrestrial ecosystems. Ambio 31:113-119.

    Google Scholar 

  • Medina E., Cuevas E., Figueroa J.and Lugo A.E.1994.Mineral content of leaves from trees growing on serpentine soils under contrasting rainfall regimes in Puerto Rico. Plant Soil 158:13-21.

    Google Scholar 

  • Mosier A.R., Delgado J.A., Cochran V.L., Valentine D.W.and Parton W.J.1997.Impact of agricultureon soil consumption of atmospheric CH4 and a comparison of CH4 and N2 O.ux in subarctic, temperate and tropical grasslands. Nut.Cycl.Agroecosys. 49: 71-83.

    Google Scholar 

  • Myers N., Mittermeier R.A., Mittermeier C.G., daFonseca G.A.B.and Kent J.2000.Biodiversity hotspots for conservation priorities. Nature 403: 853-858.

    Google Scholar 

  • Nagy L.and Proctor J.1997.Plant growth and reproduction on a toxic alpine ultrama c soil: adaptation to nutrient limitation. New Phytol. 137: 267-274.

    Google Scholar 

  • Page K.L., Dalal R.C., Menzies N.W.and Strong W.M.2002.Nitri cation in a vertisol subsoil and its relationship to the accumulation of ammonium-nitrogen at depth. Aust.J.Soil.Res. 40: 727-735.

    Google Scholar 

  • Proctor J.and Woodell S.R.J.1971.Plant ecology of Serpentine 1.Serpentine vegetation of England and Scotland. J.Ecol. 59: 375.

    Google Scholar 

  • Richards B.N.1987.The Microbiology of Terrestrial Ecosystems.John Wiley & Sons, New York.

    Google Scholar 

  • SAS 1998.Statview 5.0.1.

  • Schlesinger W.H.1997.Biogeochemistry:an analysis of global change.2nd edn.Academic Press, San Diego.

    Google Scholar 

  • Ste-Marie C.and Pare D.1999.Soil, pH and N availability effects on net nitri cation in the forest.oors of a range of boreal forest stands. Soil Biol.Biochem. 31:1579-1589.

    Google Scholar 

  • Tietema A., Boxman A.W., Bredemeier M., Emmett B.A., Moldan F., Gundersen P., Schleppi P. and W.R.F.1998.Nitrogen saturation experiments (NITREX)in coniferous forest ecosystems in Europe:a summary of results. Environ.Poll. 102: 433-437, (Suppl.431)

    Google Scholar 

  • USDA 1998.Keys to Soil Taxonomy, 8th edn.Pocahontas Press, Inc., Blacksburg, Virginia.

    Google Scholar 

  • USDA 2000.Map of Global Soil Regions.Natural Resources Conservation Service, www.nrcs. usda.gov.

  • Veldkamp E.and Keller M.1997.Nitrogen oxide emissions from a banana plantation in the humid tropics. J.Geophys.Res. 102:15889-15898.

    Google Scholar 

  • Veldkamp E., Keller M.and Nunez M.1998.Effects of pasture management on N2 O and NO emissions from soils in the humid tropics of Costa Rica. Glob.Biogeochem.Cycl. 12: 71-79.

    Google Scholar 

  • Vitousek P.M.and Sanford R.L.1986.Nutrient cycling in moist tropical forests. Ann.Rev.Ecol. Syst. 17: 137-167.

    Google Scholar 

  • Vitousek P.M.and Matson P.A.1988.Nitrogen transformations in a range of tropical forest soils. Soil Biol.Biochem. 20: 361-367.

    Google Scholar 

  • Vitousek P.M.and Howarth R.W.1991.Nitrogen limitation on land and in the sea:how can it occur? Biogeochemistry 13: 87-115.

    Google Scholar 

  • Vitousek P.M.and Matson P.A.1993.Agriculture, the global nitrogen cycle, and trace gas flux.In: Oremland R.S.(ed)Biogeochemistry of Global Change:Radiatively Active Trace Gases. Chapman and Hall, pp.193-207.

  • Vitousek P.M.and Farrington H.1997.Nutrient limitation and soil development:experimental test of a biogeochemical theory. Biogeochemistry 37: 63-75.

    Google Scholar 

  • Vitousek P.M., Chadwick O.A., Crews T.E., Fownes J.H., Hendricks D.M.and Herbert D.1997. Soil and ecosystem development across the Hawaiian Islands.GSA Today 7: 1-8.

    Google Scholar 

  • Walker T.W.and Syers J.K.1976.The fate of phosphorus during pedogenesis.Geoderma 15:1-19.

    Google Scholar 

  • Watanabe T., Chairoj P. Tsuruta H., Masarngsan W., Wongwiwatchai C., Wonprasaid S., Cholitku L.W.and Minami K.2000.Nitrous oxide emissions from fertilized upland elds in Thailand. Nut.Cycl.Agroecosys. 57: 55-65.

    Google Scholar 

  • Weitz A.M., Veldkamp E., Keller M., Ne.J.and Crill P.M.1998.Nitrous oxide, nitric oxide, and methane.uxes from soils following clearing and burning of tropical secondary forest. J.Geophys.Res. 103:28047-28058.

    Google Scholar 

  • Williams E.A., Guenther A.and Fehsenfeld F.C.1992.An inventory of nitric oxide emissions from soils in the United States. J.Geophys.Res. 97:7511-7519.

    Google Scholar 

  • WRI 1998.World Resources:A Guide to the Global Environment.World Resources Institute, Oxford University Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hall, S.J., Asner, G.P. & Kitayama, K. Substrate, climate, and land use controls over soil N dynamics and N-oxide emissions in Borneo. Biogeochemistry 70, 27–58 (2004). https://doi.org/10.1023/B:BIOG.0000049335.68897.87

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOG.0000049335.68897.87

  • Nitrification
  • Nitrogen additions
  • Nitrous and nitric oxide
  • Serpentine
  • Tropical forests
  • Ultrabasic
  • Ultramafic
  • Wet tropical mountain