Abstract
Sediment deposition is the main mechanism of nutrient delivery to tidal freshwater marshes (TFMs). We quantified sediment nutrient accumulation in TFMs upstream and downstream of a proposed water withdrawal project on the Mattaponi River, Virginia. Our goal was to assess nutrient availability by comparing relative rates of carbon (C), nitrogen (N), and phosphorus (P) accumulated in sediments with the C, N, and P stoichiometries of surface soils and above ground plant tissues. Surface soil nutrient contents (0.60–0.92% N and 0.09–0.13% P) were low but within reported ranges for TFMs in the eastern US. In both marshes, soil nutrient pools and C, N, and P stoichiometries were closely associated with sedimentation patterns. Differences between marshes were more striking than spatial variations within marshes: both C, N, and P accumulation during summer, and annual P accumulation rates (0.16 and 0.04 g P m−2 year−1, respectively) in sediments were significantly higher at the downstream than at the upstream marsh. Nitrogen:P ratios <14 in above ground biomass, surface soils, and sediments suggest that N limits primary production in these marshes, but experimental additions of N and/or P did not significantly increase above ground productivity in either marsh. Lower soil N:P ratios are consistent with higher rates of sediment P accumulation at the downstream site, perhaps due to its greater proximity to the estuarine turbidity maximum.
This is a preview of subscription content, access via your institution.
References
Barko J.W., Gunnison D. and Carpenter S.R. 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 41: 41–65.
Bedford B.L., Walbridge M.R. and Aldous A. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80(7): 2151–2169.
Booth Jr. P.M. 1989. Nitrogen and Phosphorus Cycling Strategies in Peltandra virginica and Spartina cynosuroides. The College of William and Mary, Williamsburg, VA.
Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54: 464–465.
Bowden W.B. 1984. Nitrogen and phosphorus in the sediments of a tidal freshwater marsh in Massachusetts. Estuaries 7(2): 108–118.
Bowden W.B. 1987. The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4: 313–348.
Boynton W.R., Garber J.H., Summers R. and Kemp W.M. 1995. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18(1B): 285–314.
Bran and Luebbe Inc. 1989. Technicon Autoanalyzer II Methods. Technicon Instruments Corporation, Buffalo Grove, IL.
Brush G.S. 1984. Patterns of recent sediment accumulation in Chesapeake Bay tributaries. Chem. Geol. 44: 227–242.
Cahoon D.R., Reed D.J. and Day Jr. J.W. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geol. 128: 1–9.
Callaway J.C., Nyman J.A. and DeLaune R.D. 1996. Sediment accretion in coastal wetlands: a review and a simulation model of processes. Curr. Top. Wetl. Biogeochem. 2: 2–23.
Chambers R.M. and Fourqurean J.W. 1991. Alternative criteria for assessing nutrient limitation of a wetland macrophyte (Peltandra virginica (L.) Kunth). Aquat. Bot. 40: 305–320.
Chapin F.S., Vitousek P.M. and Van Cleve K. 1986. The nature of nutrient limitation in plant communities. Am. Nat. 127(1): 48–58.
Chesapeake Bay Program 2001. Bay Atlas. http://rock.chesapeakebay.net. Accessed 16 April 2001.
Correll D.L., Jordan T.E. and Weller D.E. 1992. Nutrient flux in a landscape: effects of coastal landuse and terrestrial community mosaic on nutrient transport to coastal waters. Estuaries 15(4): 431–442.
Cowardin L.M., Carter V., Golet F.C. and Laroe E.T. 1979. Classification of wetlands and deepwater habitats of the United States. FWS/OBS-79/31. US Fish and Wildlife Service, Washington, DC
Daoust R.J. and Childers D.L. 1999. Controls on emergent macrophyte composition, abundance, and productivity in freshwater Everglades wetland communities. Wetlands 19(1): 262–275.
Darke A.K. and Megonigal J.P. 2003. Control of sediment deposition rates in two mid-Atlantic coast tidal freshwater wetlands. Estuarine, Coastal Shelf Sci. 57(1–2): 259–272.
DiTommaso A. and Aarssen L.W. 1989. Resource manipulations in natural vegetation: a review. Vegetatio 84: 9–29.
Dyer K.R. 1994. Estuarine sediment transport and deposition. In: Pye K. (ed) Sediment Transport and Depositional Processes. Blackwell Scientific Publications, Boston, MA, pp. 193–218.
Froelich P.N. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol. Oceanogr. 33(4): 649–668.
Gee G.W. and Bauder J.W. 1986. Particle size analysis. In: Klute S. (ed) Methods of Soil Analysis. American Society of Agronomy, Madison, WI, pp. 383–411.
Godfrey R.K. and Wooten J.W. 1979. Aquatic and Wetland Plants of Southeastern United States: Monocotyledons. The University of Georgia Press, Athens, GA.
Godfrey R.K. and Wooten J.W. 1981. Aquatic and Wetland Plants of Southeastern United States: Dicotyledons. University of Georgia Press, Athens, GA.
Güsewell S., Koerselman W. and Verhoeven J.T.A. 1998. The N:P ratio and the nutrient limitation of wetland plants. Bull. Geobot. Inst. ETH 64: 77–90.
Güsewell S., Koerselman W. and Verhoeven J.T.A. 2003. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol. Appl. 13(2): 372–384.
Hatton R.S., Patrick Jr. W.H. and DeLaune R.D. 1982. Sedimentation, nutrient accumulation, and early diagenesis in Louisiana Barataria Basin coastal marshes. In: Kennedy V.S. (ed) Estuarine Comparisons. Academic Press, New York, NY, pp. 255–267.
Hatton R.S., DeLaune R.D. and Patrick Jr. W.H. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnol. Oceanogr. 28(3): 494–502.
Hedley M.J. and Stewart J.W.B. 1982. Method to measure microbial phosphate in soils. Soil Biol. Biochem. 14: 377–385.
Hensel P.F., Day J.W., Pont D. and Day J.N. 1998. Short-term sedimentation dynamics in the Rhône River Delta, France: the importance of riverine pulsing. Estuaries 21(1): 52–65.
Jones R.I., Shaw P.J. and De Haan H. 1993. Effects of dissolved humic substances on the speciation of iron and phosphate at different pH and ionic strength. Environ. Sci. Technol. 27(6): 1052–1059.
Kastler J.A. and Wiberg P.L. 1996. Sedimentation and boundary changes of Virginia salt marshes. Estuar. Coast. Shelf S. 42: 683–700.
Khan H. and Brush G.S. 1994. Nutrient and metal accumulation in a freshwater tidal marsh. Estuaries 17(2): 345–360.
Kiehl K., Esselink P. and Bakker J.P. 1997. Nutrient limitation and plant species composition in temperate salt marshes. Oecologia 111: 325–330.
Klopatek J.M. 1978. Nutrient dynamics of riverine marshes. In: Good R.E., Whigham D.F. and Simpson R.L. (ed) Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York, NY, pp. 195–216.
Koerselman W. and Meuleman A.F.M. 1994. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33: 1441–1450.
Koroleff F. 1983. Determination of nutrients. In: Grasshoff K., Ehrhardt M. and Kremling K. (ed) Methods of Seawater Analysis. Verlag Chemie, Weinheim, pp. 125–139.
Lebo M.E. 1991. Particle-bound phosphorus along an urbanized coastal plain estuary. Marine Chem. 34: 225–246.
Leonard L.A. 1997. Controls of sediment transport and deposition in an incised mainland marsh basin. Wetlands 17(2): 263–274.
Lin J. and Kuo A.K. 2001. Secondary turbidity maximum in a partially mixed microtidal estuary. Estuaries 25(5): 707–720.
Lockaby B.G. and Walbridge M.R. 1998. Biogeochemistry. In: Messina M.G. and Conner W.H. (ed) Southern Forested Wetlands Ecology and Management. Lewis Publishers, Washington, DC, pp. 149–172.
Lucotte M. and d'Anglejan B. 1988. Processes controlling phosphate adsorption by iron hydroxides in estuaries. Chem. Geol. 67: 75–83.
McManus J. 1998. Temporal and spatial variations in estuarine sedimentation. Estuaries 21(4A): 622–634.
Mitsch W.J. and Gosselink J.G. 2000. Wetlands. John Wiley & Sons, Inc., New York, NY.
Moore D.R.J., Keddy P.A., Gaudet C.L. and Wisheu I.C. 1989. Conservation of wetlands: do infertile wetlands deserve a higher priority? Biol. Conserv. 47: 203–217.
Morris J.T. 1991. Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition. Ann. Rev. Ecol. Syst. 22: 257–279.
Morris J.T. and Bradley P.M. 1999. Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnol. Oceanogr. 44(3): 699–702.
Morse J.L. 2002. Sediment accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia. George Mason University, Fairfax, VA.
Murphy J. and Riley J. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36.
National Oceanic and Atmospheric Administration 1997. NOAA Estuarine Eutrophication Survey. Office of Resources Conservation and Assessment, Silver Spring, MD.
National Wetlands Inventory 2001. Wetlands Interactive Mapper. http://wetlands2.nwi.fws.gov. Accessed 16 April 2001.
Nelson D.W. and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. In: Bigham J.M. (ed) Methods of Soil Analysis: Part 3 – Chemical Methods. Soil Science Society of America Madison, WI, pp. 961–1010.
Odum W.E. 1988. Comparative ecology of tidal freshwater and salt marshes. Ann. Rev. Ecol. Syst. 19: 147–176.
Odum W.E., Smith T.J., Hoover J.K. and McIvor C.C. 1984. The ecology of tidal freshwater marshes of the United States East Coast: a community profile. FWS/OBS-83/17 US Fish and Wildlife Service, Washington, DC.
Orson R.A., Simpson R.L. and Good R.E. 1990. Rates of sediment accumulation in a tidal freshwater marsh. J. Sedimentol. Petrol. 60: 859–869.
Orson R.A., Simpson R.L. and Good R.E. 1992. The paleoecological development of a late Holocene, tidal freshwater marsh of the upper Delaware River estuary. Estuaries 15: 130–146.
Paludan C. and Jensen H.S. 1995. Sequential extraction of phosphorus in freshwater wetland and lake sediment: significance of humic acids. Wetlands 15(4): 365–373.
Paludan C. and Morris J.T. 1999. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry 45: 197–221.
Pasternack G.B. and Brush G.S. 1998. Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries 21(3): 407–415.
Patrick Jr. W.H. and DeLaune R.D. 1976. Nitrogen and phosphorus utilization by Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana. Estuar. Coast. Marine Sci. 4: 59–64.
Perry J.E. and Atkinson R.B. 1997. Plant diversity along a salinity gradient of four marshes on the York and Pamunkey Rivers in Virginia. Castanea 62(2): 112–118.
Peterjohn W.T. and Correll D.L. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65(5): 1466–1475.
Puckett L.J., Woodside M.D., Libby B. and Schening M.R. 1993. Sinks for trace metals, nutrients, and sediments in wetlands of the Chickahominy River near Richmond, Virginia. Wetlands 13(2): 105–114.
Reddy K.R., Kadlec R.H., Flaig E. and Gale P.M. 1999. Phosphorus retention in streams and wetlands: a review. Crit. Rev. Environ. Sci. Technol. 29(1): 83–146.
Richardson C.J. 1989. Freshwater Wetlands: Transformers, Filters, or Sinks? In: Sharitz R.R. and Gibbons J.W. (ed) Freshwater Wetlands and Wildlife. US DOE Office of Scientific and Technical Information, Oak Ridge, TN, pp. 25–46.
SAS Institute 1999. SAS Procedures Guide, Version 8 for Windows. SAS Institute, Inc., Cary, NC.
Schlesinger W.H. 1997. Biogeochemistry: an analysis of global change. Academic Press, New York, NY.
Serodes J.B. and Troude J.P. 1984. Sedimentation cycle of a freshwater tidal flat in the St. Lawrence Estuary. Estuaries 7(2): 119–127.
Shaver G.R. and Melillo J.M. 1984. Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65(5): 1491–1510.
Sholkovitz E.R., Boyle E.A. and Price N.B. 1978. The removal of dissolved humic acid and iron during estuarine mixing. Earth Planet. Sci. Lett. 40: 130–136.
Silberhorn G.M. and Zacherle A.W. 1987. King William and Town of West Point tidal marsh inventory. Special Report No. 289 in Applied Marine Science and Ocean Engineering. Virginia Institute of Marine Science, Gloucester Point, VA.
Simpson R.L., Good R.E., Walker R. and Frasco B.R. 1983. The role of Delaware River freshwater tidal wetlands in the retention of nutrients and heavy metals. J. Environ. Quality 12(1): 41–48.
Sprague L.A., Langland M.J., Yochum S.E., Edwards R.E., Blomquist J.D., Shenk G.W. and Preston S.D. 2000. Factors Affecting Nutrient Trends in Major Rivers of the Chesapeake Bay Watershed. US Geological Survey, Richmond, VA.
Stevenson J.C., Kearney M.S. and Pendleton E.C. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geol. 67: 213–235.
Sundareshwar P.V. and Morris J.T. 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnol. Oceanogr. 44(7): 1693–1701.
Sundareshwar P.V., Morris J.T., Hoepfler E.K. and Fornwalt B. 2003. Phosphorus limitation of coastal ecosystem processes. Science 299: 563–565.
Svengsouk L.J. and Mitsch W.J. 2001. Dynamics of mixtures of Typha latifolia and Schoenoplectus tabernaemontani in nutrient-enrichment wetland experiments. Am. Midland Nat. 145: 309–324.
United States Geological Survey 2002. http://water.usgs.gov. Accessed 3 June 2003.
Valiela I., Teal J.M. and Sass W. 1973. Nutrient retention in salt marsh plots experimentally fertilized with sewage sludge. Estuar. Coast. Marine Sci. 1: 261–269.
van den Driessche R. 1974. Prediction of mineral nutrient status of trees by foliar analysis. Bot. Rev. 40: 347–394.
van Wijnen H.J. and Bakker J.P. 1999. Nitrogen and phosphorus limitation in a coastal barrier salt marsh: the implications for vegetation succession. J. Ecol. 87: 265–272.
Verhoeven J.T.A., Koerselman W. and Meuleman A.F.M. 1996. Nitrogen-or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends Ecol. Evol. 11(12): 494–497.
Verhoeven J.T.A., Whigham D.F., van Logtestijn R. and O'Neill J. 2001. A comparative study of nitrogen and phosphorus cycling in tidal and non-tidal riverine wetlands. Wetlands 21(2): 210–222.
Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H. and Tilman D.G. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7(3): 737–750.
Walbridge M.R. 1991. Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology 72(6): 2083–2100.
Walbridge M.R. and Lockaby B.G. 1994. Effects of forest management on biogeochemical functions in southern forested wetlands. Wetlands 14(1): 10–17.
Walbridge M.R. and Struthers J.P. 1993. Phosphorus retention in non-tidal palustrine forested wetlands of the Mid-Atlantic region. Wetlands 13: 84–94.
Whigham D.F., Chitterling C. and Palmer B. 1988. Impacts of freshwater wetlands on water quality: a landscape perspective. Environ. Manage. 12(5): 663–671.
Walbridge M.R., Richardson C.J. and Swank W.T. 1991. Vertical distribution of biological and geochemical phosphorus subcycles in two southern Appalachian forest soils. Biogeochemistry 13: 61–85.
Whigham D.F., McCormick J., Good R.E. and Simpson R.L. 1978. Biomass and primary production in freshwater tidal wetlands of the Middle Atlantic Coast. In: Good R.E., Whigham D.F. and Simpson R.L. (ed) Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York, NY, pp. 3–20.
Whittecar G.R., Megonigal J.P. and Darke A.K. in preparation. Geomorphic evolution of fresh-water tidal wetlands, Mattaponi River, Virginia. For: Wetlands.
Wolaver T.G., Zieman J.C., Wetzel R. and Webb K.L. 1983. Tidal exchange of nitrogen and phosphorus between a mesohaline vegetated marsh and the surrounding estuary in the lower Chesapeake Bay. Estuar. Coast. Shelf S. 16: 321–332.
Wood T.E., Bormann F.H. and Voigt G.K. 1984. Phosphorus cycling in a northern hardwood forest: biological and chemical control. Science 223: 391–393.
Worm B., Reusch T.B.H. and Lotze H.K. 2000. In situ nutrient enrichment: methods for marine benthic ecology. Int. Rev. Hydrobiol. 85(2–3): 359–375
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Morse, J.L., Megonigal, J.P. & Walbridge, M.R. Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA. Biogeochemistry 69, 175–206 (2004). https://doi.org/10.1023/B:BIOG.0000031077.28527.a2
Issue Date:
DOI: https://doi.org/10.1023/B:BIOG.0000031077.28527.a2
- Nitrogen
- Nutrient limitation
- Phosphorus
- Sediment
- Tidal freshwater marsh